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ABSTRACT The paper is organized as follows: Section 2 describes egvic
and systems currently used for voice interception and radng,
and discusses the integration of speaker recognition téogies
into these systems, in terms of requirements and funciiesl
Section 3 provides details about state-of-the-art spesdargni-
%on approaches that are currently being employed in oulesys

ection 4 discusses the main criticalities introduced lyctiarac-
teristics of the signals under consideration, as well asesiomova-
tive approaches for dealing with these criticalities. Hin&ec. 5
presents a set of initial results about the current perfaoeaf our
system on the TIMIT database, and on a subset of TIMIT spesaker
with artificially added background noises.

This paper presents an automatic speaker recognitiomsysten-
telligence applications. The system has to provide funefities
for a speaker skimming application in which databases afroxl
conversations belonging to an ongoing investigation caarbe®-
tated and quickly browsed by an operator. The paper dissuss
the criticalities introduced by the characteristics of thalio sig-
nals under consideration — in particular background naisechan-
nel/coding distortions — as well as the requirements anctimal-
ities of the system under development. It is shown that thiope
mance of state-of-the-art approaches degrades signlficamres-
ence of moderately high background noise. Finally, a nqvehker
recognizer based on phonetic features and an ensembléietass
is presented. Results show that the proposed approach\ampro 2. VOICE INTERCEPTION AND MONITORING
performance on clean audio, and suggest that it can be embloy2 1 State-of-the-art and motivations
towards improved real-world robustness. )
The audio material analyzed in this paper consists of réegsd
1. INTRODUCTION of conversations that have been captured through intéocephd
) ) N . monitoring devices. These include phone tapping devicpgpped
Text-independent automatic speaker recognition has beeotare  with various front-end interfaces in order to connect to @me
research subject for many years due to its potential foriegtins  more phone lines and to different phone technologies (PTig|
in many domains, including multilevel access control, $agtion  GSM/UMTS mobile phones and VolP transmissions), as well as
autentication (e.g. for telephone banking), law enforaeinfe.g.  systems for remote-listening of rooms and other envirorisjen
home-parole monltorlng), Speech data management (e.@ ﬂm” equipped with microphones and sensors.
browsing). N ] Usually the device is instructed to listen and record cosaer
Many existing speaker recognition systems share the sasie ba tjons in an autonomous way. In a centralized system for platie
components. Short-time spectral information of a speakesice  interception, a front-end interface will detect an estabéd call
is extracted in the form of a time-series of feature vectas)-  jnyolving a monitored line, and a control unit will begin trecord-
ally composed of Mel-Frequency Cepstral Coefficients (MBEC  ng of the conversation. In a remote-listening device, thaitored
These features are used to train a speaker model, often &i@aus conyersation will be sent to a receiving unit, most typigétirough
Mixture Model (GMM). Systems based on these components havg GSM connection: in both cases the recorded signals suéfer f
been shown to achieve remarkable performance in controled  the artifacts introduced by voice encoding and/or chanistbd
ditions [9]. However strong degradation of performanceuoseén  tions, Moreover, some kind of additional encoding is perfed at
the presence of significant background noise and/or strbagrel  the receiver side for compact storage purposes, e.g. ajeate
distortions, and real-world robustness still appears t@amepen encoding like MPEG-2 Layer Il format.
research issue for speaker-recognition systems [8]. In a listening session, the operator is prompted with a list o
In this paper we report on initial results in the developn@r@ 4y ajlable recordings, labeled with date, time, duratiot @ther rel-
speaker-recognition system for intelligence applicatiom brief,  eyant information (e.g. incoming/outgoing phone numbersase
the system under development has to provide functionslfte  of phone calls). This leads to a huge amount of recordingshvhi
a “speaker skimming” application in which databases of l@d  paye to be listened to, classified and, if needed, transthigethe
conversations belonging to an ongoing investigation caa®-  hyman operator. Although the most time-consuming task és th
tated and quickly browsed by an operator. Speaker recogniti {ranscription, even the initial skimming of the materiajuées time
in this context is a largely unconstrained task. Extremaigiable especially since the largest part of recorded calls areaylyi not

channel and noise conditions can be met (typical backgraoig®s  iyteresting for the investigation. There is thus the neealtomate
may include car engine, babble, a variety of domestic appds, part of this process.

etc.). Moreover the recordings usually undergo many psings
and compression stages (e.g., transmission over GSM fetdyy
some form of perceptual encoding). As a result the signalseto
analyzed have high SNR’s and poor quality. The system currently being developed aims at applying gpeak
recognition capabilities to the setting-up and browsindathibases
3F. Flego is now Research Associate with the Cambridge UsityeEn-  of conversations. Figure 1 provides a schematic overviethef
gineering Dept. system. The envisaged workflow for system usage starts tvth t

2.2 A *“speaker skimming” application
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Figure 1: Schematic overview of the system under developmen

first (and possibly reiterable) training of the system. lis {thase
the operator provides the system with recordings for eaghain
the known speakers involved in a given investigation, alesi
identity or tagging information. This speaker database ttem

and may instead accept some false positives (since thepevilir-
ther assessed by a human operator).

The most demanding requirements concern the signals on
which the system will work. For phone and/or cellular lines,

be used as a reference by the speaker recognition system to afumber of issues are known [8] and include limited bandwidth

notate recorded conversations. After each recording teaksp-
recognition procedure will be activated and will producemplete
labeling of the conversations, that includes informatibow iden-
tity of the involved speakers along with the usual timestanfiqr-
mations. This provides the operator with additional caltéds for
browsing and managing recorded conversations, in a twoisddul
way:

known amplitude and phase distortions, noises of variond, kn-
cluding cross-talk. Other issues to deal with include thesence of
environmental noises (stationary or not), and lossy cod#ects.
Finally, the system has to deal with issues related to intra-
speaker variability, which in this case is more likely to heedo
deliberate fraud attempts rather than usual effects (e.godnef-
fects). The system should thus be flexible and able to facerdeu

e Known speakers can be easily found; searches through thef adverse conditions.

recordings are possible, with queries like: “Find conveose
involving speaker X and speaker Y between date A and date B’
e The operators can be warned about the first appearance

of 3. ABASELINE SPEAKER RECOGNITION SYSTEM

speakers previously unknown to the system; he may then derne system is currently in the first stage of development. ciite

cide to ignore them or, if they are relevant for the invegtaa
he can instruct the device to incorporate them in the dagabas

The application outlined so far requires both speaker itifies
tion and speaker diarization functionalities. In the Hteire the
term speaker diarizatiorrefers to a recognition task in which an
audio stream containing two or more speakers is partitionexd
homogeneous segments according to the speaker identitythé&o
intelligence applications under consideration here,izhdéion can
be employed by the operator to detect long-lasting turnsiaa d
logues, which are possibly the most informative parts ofdbe-
versation. Moreover diarization is needed as a prelimistep to
proper speaker identification on homogeneous segments.

On a different order of engineering difficulty lies a furthevel
of automation, i.e. automatic speech recognition (ASRabdpies
able to provide transcriptions of the conversations in aoraatic
way. This would be of extremely helpful because, along wliid t
usefulness of transcriptions itself, would also providesasy way
to search through calls content.

2.3 Requirements

The system under development should be able to accurately di
criminate between at least 50 speakers. This relativelynomber
is reasonable for medium sized investigations, charaeterby a
limited group of speakers, which are the target of the appiba.
Other applications, such as nation-wide speaker datalssesd
between investigations, are not the focus of this work.

Typical evaluation criteria for a speaker recognition eyst
look at the trade-off between “false positives” (occurringen an
impostor is mistakenly recognized as the target speakedrjraiss”
recognitions (i.e. when the target is not recognized). boetance
with with the criteria of international NIST Speaker Recitigm
Evaluation (SRE) series [9], which gives more importancéht®
reduction of the misses, our application needs to minimizses
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rently available software has been implemented in Matlatad@
and comprises a fully functional speaker recognition syste
Speaker diarization functionalities are also being deedo but
will not be discussed in the remainder of this paper. Theesyst
is composed of three main components: feature extractpmaker
modeling, and scoring. In the remainder of this section veeutis
each of these components for the baseline speaker recogsits-
tem currently employed.

3.1 Feature extraction

The feature extraction step is based on signal energy andGMFC
(Mel-Frequency Cepstrum Coefficients). These featuresobre
tained using a standard procedure described in the foltpwitore-
over, many design choices are bases on the ETSI ES-201-4108 st
dard, used for distributed feature computation. Finallyha audio
used as input is filtered through a linear-phase antialites find
downsampled td-s = 8kHz in order to work with audio quality
similar to that of the real-world signals under considerat{e.g.
phone signals).

As a first step, the incoming stream is segmented in frames
with length 20 ms, and using an overlap of 50%. The stream is
pre-processed through a Speech Activity Detector (SADJ,arly
frames containing actual speech undergo feature extracfitis
pre-processed input signal is denotediasn the following.

The DC component is removed frogy using a one-pole HP
filter, and the signal energy is then computed frame-by-aihe
MFC coefficientsc;, are obtained by applying the FFT to the sig-
nal, performing a Mel-frequency scale warping (throughahdil
terbank analysis [11]), and finally applying a DCT to the Egergy
output of the filters. In addition, the zeroth MFC coefficieny, is
computed as the logarithm of the meansef Moreover, the fil-
terbank analysis is preceded by a pre-emphasis of the apgctr
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that emphasize high frequencies and is obtained using thBl-HP ture associated to a broad phonetic class [11]. Therefergitb-

terH(z) = 1-097771. posed idea is a natural refinement to a recognition approasédb
Following established approaches, the obtained MFCCriestu on GMMs. A similar line of reasoning has been recently fokbolw

are complemented with their delta coefficients (see e.g50)4The by other researchers [4, 10].

final feature vectors belong to a feature feature space fiereke- ) -

noted asZ, which has a number of dimensions equal to the numbef-1 Phonetic features and component classifiers

of features extracted from each frame. The features oltdeen  As described in Sec. 3, in the baseline system a speech sgynal

a sequence of frames form a cloud of points in the space segmented in overlapping frames with constant length, fadrich

] features are extracted. By contrast, here we propose tq deau
3.2 Speaker modeling tures according to some criteria and subsequently trainxénei
Statistical modeling of speakers is based on the widely aged mModel for each feature class. o
proach’ Origina”y proposed by Reyn0|ds [12] In deta|b wara_ In th|5 Work the Classes are based on phonetIC criteria. Two

metric statistical tool used in this approach is the Gansifixture ~ families of classes will be used in the remainder of this warke
Model (GMM). Speaker-dependent GMMs are trained in thespacfirst one, termed Narrow Classification (NC), uses five setpss
Z, to fit the cloud of features of a given speaker. fricatives, nasals, (semi)vowels, and silences. The sbaoe,
A number of normalization techniques may be applied befordermed Broad Classification (BC), uses three larger setaeleo
GMM training. The most used and effective one is cepstralrea non-vowels, and silences.
subtraction (CMS). This procedure is often applied in mished _In this preliminary study we make use of the TIMIT database
tests, when the train and test handsets (microphones) bstase ~ Which, although dated and limited in size, has the advantage-
tially different (eg. electret vs. carbon microphones).discussed  INg fully tagged with phonetic transcriptions. This prozéda a
in Sec. 5, the tests reported in this work are conducted onlter ~ readily available and realiable phonetic segmentatiod,tae pho-
database, which does not contains training-test mismatéur this ~ Netic labels can be straightforwardly translated into tizad BC
reason CMS is not used in this particular case. classes. In a real-world application, automatic phonegigneen-
The training procedure for the GMM is based on a form of EM tation must be employed, based either on ASR approaches or on
(Expectation-Maximization) algorithm. Feature vectors $irst ~ Plind segmentation techniques (e.g. vector quantizatidrgpw-
grouped in clusters using some standard clustering metagd, ~€ver we emphasize that the approach proposed here doeseubt ne
K-means, hierarchical clustering, or the like. The initduster- @ full-fledged speech recognizer, but only a “loose clasSifiich
ing provides an initialization for the EM algorithm. Moreguisely, ~ Should look at the time-frequency characteristics of thengis,
the codebook vectors found by the clustering are used ag adtis ~ Without the burden of complex tools like language modelgrams
mation of the means for the multivariate gaussians whichposa ~ and so on. i .
the GMM. The procedure for train/test is then structured as follows:
The expectation (E) and the maximization (M) phases are exdVIFCCs feature vectors are extracted on signal frames wittjtie
cuted alternately until convergence. An estimation of dammean 20 mS (with 50% overlap). Then (using the TIMIT labeling) kac
and variance (M step) is followed by an evaluation of thenested ~ feature vector is assigned to one of the NC (or BC) classesteth
density (E step), which undergoes a normalization phase®éfie fore, flye (or three) GMM models (terme:cbmponent_ cIassnf_l_e)s
next M step [3]. At the end of the training phase, one GMM isaré trained for each speal_<er. The test phase is carried augim-
obtained for each speaker. ilar way: features are aSS|gnec_i to one phonetic class ancetrad-
The testing phase makes use of the models to obtain a scok&ted against the corresponding GMM model. For every speake
which associates a given test utterance with a speaker modé€ thus obtain a number of log-likelihood scores, which recuk
MFCCs vectors are extracted frame-by-frame from the test se Combined in order to provide a single scoring.
tence. Each vector is then evaluated against each gaus(’sianzi) -
the speaker model, providing the likelihood for the coroesfing -2 Ensemble classifier
speaker model. More precisely, the current implementatiakes  Classifiers whose decision is based on the outputs of an dfsem
use of the log-likelihood. of component classifiers are often naneesemble classifierdhe
As a final result, a test utterance produces a score for eactcores of individual component classifiers are typicallyighted
speaker model; the models are then sorted by likelihoodsneted-  through a gating subsystem, in order to generate the ukticlas-
ing order, with the topmost being the most probable one. e fi sification [3].

classification is based on the usual maximum-likelihoodsgifeca- For each test sentence we build a score marixvith N¢
tion rule. columns (whereN; is the number of employed classeg, = 3,5
for NC and BC). The columns @& are then filled with the indexes
4. RECOGNITION OVER ACOUSTIC CLASSES of the Nmax speakers which received the highest scoring, for each
class, sorted in decreasing order. We make use of two wejghin

This section presents an improved approach to speakemiéiong | eciors:

that is expected to be more robust than the baseline system de . . . . liabil
scribed in the previous section, with respect to typicalrsesi of e Class weightsw,: take into account different levels of reliabil-

signal degradation [8]. ity of the phonetlc Classe_s: . .

The basic idea is to exploit the time-varying spectral chizra ° O_r_der weights w,: take into account different levels of relia-
istics of a speech signal in order to train specializedsttasil mod- bility of the Nmaxordered scores, where the topmost places have
els. By defining a certain numbé{; of acoustic (e.g., phonetic) more chance to indicate the correct speaker indexes
classes, a speech signal can be segmented into succegshense, A weight matrixW is then computed @ = w, ' wc. The scor-
each belonging to one class. Théf, speaker-dependent gaussian ing procedure for the ensemble classifier defines a “votesree
mixture models can be trained, one for each acoustic classmb-  with a number of elementss equal to that of the speaker models.
tivation behind this approach is the intuition that groupfeatures  The vectorv is filled according to the formula:
over similar phonetic sounds should lead to more regulaessm-
tations in the feature spac&. This, in turn, ensures better perfor- Vg = Z W j Vi€ [1,Nmay,] € [LNc], ke [1,Ng] 1)
mances of the GMMs, which are expected to be more indicafive o =k
speaker differences than phonetic differences.

The idea is not entirely new: the original motivation forngi  Eq. (1) scans through the mat$x each time the speaker indkxs
GMMs in text-independent speaker recognition is that ealsg  found in the elemen§ j, the votey, is increased by the associated
sian of a speaker-dependent model shoud represent a $gtcita  weightW j. When the test sentence features have been evaluated
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against all the speaker models the vecotorontains the ensemble
classifier output; in particular the topmost probable speakodel
is the one with highesty value.

The choice of the weight vectorg. andwy is critical in order
to obtain optimal ensemble decisions. For each ensemhkesyse
use three different class weight vectarg which lead to different
results:

® Wequ assign an equal weight value 1 to each class recognizer

® Weyr CONtains euristic weights determined from ad-hoc numer-

ical tests
— for énc: Weur = [0.102 0.201,0.102 0.394,0.207]]
— for éac: Weur = [0.253 0.4950.253
® West IS an estimate of the optimal class weights, computed as

posterior normalized sample mean of the hits numbers fdr eac

class;
— for €N West = [0.09820.147,0.238 0.329,0.189
— for éac: West = [0.2850.482 0.234
The optimum value for vectox, can not be trivially estimated.
In this study we use an empirically determined set of weigints
which monotonically decreasing values assign more weiglihe
topmost placed models.

The ultimate log-likelihood scores for speaker models in
the ensemble classifier are computed by keeping track of the

log-likelihood output for each GMM class model for all speek
If the maximum value irv is thek-th, the score for th&-th speaker
model is taken to be the highest log-likelihood among alingt
contributors to the value.

5. RESULTS
5.1 Material

All the results reported below are conducted on the TIMITabase
which contains 630 speakers, 438 males and 192 females;dher
10 utterances for each speaker, with typical durations énlibhs
range. Moreover, the speakers are grouped in 8 geograplical
gions following their dialect accent. The last availableuging is
the type of phonetic content of the utterances. The 10 seegen
spoken by each speaker are choosen in this way:
e 5 are phonetically-compact sentences, designed to wedr @il
the phones pairs (marked SX)
e 3 are phonetically-diverse sentences which add divensisgn-
tence types and phonetic contexts (marked Sl)

Miss probability (in %)

a

False Alarm probability (in %)

Figure 2: Performance of the baseline syst@mwith varying num-
bers of gaussians?,, %s, $16 and HA3», from top right to bottom
left.
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Figure 3: Performances oB, baseline system applied on clean
TIMIT (dotted), TIMIT corrupted with white noise (dashed),
TIMIT corrupted with babble noise (solid) (the latter havilFS

e 2 are dialect “shibboleth” sentences equal for all speakerggdB).

(marked SA)

All the results reported below are obtained using the espieakers
set. The training features are extracted from the 2 SA, thiea®&

The sameZ, system has been applied to databases which differ

the first 3 SX sentences of each speaker. The test sets ade bufbr the quality of the recordings, namely:

around the remaining 2 SX utterances.

One shortcoming in the use of TIMIT is the limited amount
of train/test material, which has led to limitations in otudy. Cur-
rent state-of-the-art systems typically employ 32 gaussia model
each speaker. However, limited training material, togetvith the
further grouping into phonetic classes, cause componenM&M
with 32 gaussians to overfit the density, resulting in thedjence
of the EM algorithm. This forces us to use a lower number okgau
sians, namely 4 for the component classifiers.

5.2 Performance of baseline system and ensemble classifier
In all the results reported here, performance is repredehteugh

e clean TIMIT recordings

e TIMIT recordings corrupted with white noise (SNR 10 dB)

e TIMIT recordings corrupted with babble noise (SNR 10 dB)
Figure 3 shows the resulting DET. As expected the perforeaee
cays when noisy speech is used, and the white noise causegestr
degradation with respect to babble noise.

The baseline system8, is now compared to the system using
the ensemble classifier with both the NC and BC classificatide-
noted as6nc and%gc, respectively. The ensemble scoring for both
Gnc and%pc uses thdNmax = 15 speakers with highest likelihoods
in all acoustic classes. The DET plots in Fig. 4 show that Gib
and%pc occupy a lower position with respect #8,, and thus ex-

DET curves [7], which are commonly used in the evaluation ofhibit a markedly better performance. The figure also repibrés

speaker recognition systems (in particular the NIST SREesgr
and are suited to represent performance in task that ineotkede-
off of errors (misses and false-alarms).

Figure 2 illustrates the performance loss of the baselistesy
% with respect to the number of gaussians used. In the follgwin
for the sake of coherence in results, we will assu#fiyeas our base-
line system.

16

DET for %35, showing that its performance falls between those of
the €. systems. This suggests that thlesystems have comparable
discriminative properties with respect #83,, although they use a
lower number of gaussians and therefore require significkower
computing resouces.

The systems are also compared in terms of correctly rettieve
speakers. Table 1 reports results obtained on the 630 TlIpkals
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tic classes are self-organized among gaussians in each GNIM [
Ch. 3]. Moreover the presented results are intended to bertnst
point towards the development of an ensemble classifier icstwh
different feature sets, specifically designed for the atogbarac-
teristics of each class, are used for each GMM. Many intiexgst
alternative sets exists; the excitation source featuresr@ the vo-
cal tract LSF (line spectral frequencies) [6] have both ptbto be
useful. Furthermore, a complementary feature set is repted
by prosodic features, which, by capturing long-term sigrrac-
teristics, are expected to improve the recognition [13haHy the
proposed approach is suited to be combined with other tqubai
currently investigated in the literature, particularlytivi'phonetic
speaker recognition” systems [1], i.e. speaker-recagmigystems
based on differences in dynamic realization of phonetitufes.

Miss probability (in %)

False Alarm probability (in %)
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Figure 4: Performance & c (dashed)#sc (dotted) and%,4 and
PB3o (both solid, see labels) on clean audio.

ers. It can be noticed thaBsz, achieves almost optimal perfor-
mance. More interestingly, the systems using an enserndssifier
produce better results ovef,, with all the weighting choices. The
column “Overall” reports the sum of hits by all classes in fingt

Nmax = 15 places (see Sec. 4.2): these results show that the num-

ber of speakers which the component classifiers have rexedyim
the topmost positions not only largely exceeds thataf but also
approaches the total number of speakers. If on one handethis r
sult let us infer the suboptimality of the ensemble scoripgraach
currently employed, on the other hand it suggests that thegsed
ensemble classifier can outperform the baseline systapif suf-
ficient training material is provided.

6. CONCLUSIONS

The paper has described the characteristics of a “speaiemsk”
for intelligence applications, with a focus on phone taggnd en-
vironmental interception. We have provided an overview hef t
functioning of the application, and depicted its main perfance
requirements, with particular respect to issues usuallpdan real-
world recorded signals, which deteriorate the recognitienfor-
mances. The last sections of the paper present an innoagiive
proach which uses an ensemble of GMMs for every speaker model
each trained on a different subset of MFCCs features grobged
phonetic classes.

The results presented in this work are still preliminary anfi
fer from a number of shortcomings. The most important onbés t
unavailability of results on real-world noisy recordinddoreover
the results show that the method currently employed to coenthie
output from the component classifiers is not optimal. Noeletts,
the study provides an initial confirmation of the effectiges of the
proposed approach.

Current work is targeted at studying more in depth how acous-

[10] A. Park and T. J. Hazen.
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