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ABSTRACT

This paper presents an automatic speaker recognition system for in-
telligence applications. The system has to provide functionalities
for a speaker skimming application in which databases of recorded
conversations belonging to an ongoing investigation can beanno-
tated and quickly browsed by an operator. The paper discusses
the criticalities introduced by the characteristics of theaudio sig-
nals under consideration – in particular background noise and chan-
nel/coding distortions – as well as the requirements and functional-
ities of the system under development. It is shown that the perfor-
mance of state-of-the-art approaches degrades significantly in pres-
ence of moderately high background noise. Finally, a novel speaker
recognizer based on phonetic features and an ensemble classifier
is presented. Results show that the proposed approach improves
performance on clean audio, and suggest that it can be employed
towards improved real-world robustness.

1. INTRODUCTION

Text-independent automatic speaker recognition has been an active
research subject for many years due to its potential for applications
in many domains, including multilevel access control, transaction
autentication (e.g. for telephone banking), law enforcement (e.g.
home-parole monitoring), speech data management (e.g. voice mail
browsing).

Many existing speaker recognition systems share the same basic
components. Short-time spectral information of a speaker’s voice
is extracted in the form of a time-series of feature vectors,usu-
ally composed of Mel-Frequency Cepstral Coefficients (MFCCs).
These features are used to train a speaker model, often a Gaussian
Mixture Model (GMM). Systems based on these components have
been shown to achieve remarkable performance in controlledcon-
ditions [9]. However strong degradation of performance occurs in
the presence of significant background noise and/or strong channel
distortions, and real-world robustness still appears to bean open
research issue for speaker-recognition systems [8].

In this paper we report on initial results in the developmentof a
speaker-recognition system for intelligence applications. In brief,
the system under development has to provide functionalities for
a “speaker skimming” application in which databases of recorded
conversations belonging to an ongoing investigation can beanno-
tated and quickly browsed by an operator. Speaker recognition
in this context is a largely unconstrained task. Extremely variable
channel and noise conditions can be met (typical backgroundnoises
may include car engine, babble, a variety of domestic appliances,
etc.). Moreover the recordings usually undergo many processing
and compression stages (e.g., transmission over GSM followed by
some form of perceptual encoding). As a result the signals tobe
analyzed have high SNR’s and poor quality.
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The paper is organized as follows: Section 2 describes devices
and systems currently used for voice interception and monitoring,
and discusses the integration of speaker recognition technologies
into these systems, in terms of requirements and functionalities.
Section 3 provides details about state-of-the-art speakerrecogni-
tion approaches that are currently being employed in our system.
Section 4 discusses the main criticalities introduced by the charac-
teristics of the signals under consideration, as well as some innova-
tive approaches for dealing with these criticalities. Finally Sec. 5
presents a set of initial results about the current performance of our
system on the TIMIT database, and on a subset of TIMIT speakers
with artificially added background noises.

2. VOICE INTERCEPTION AND MONITORING

2.1 State-of-the-art and motivations

The audio material analyzed in this paper consists of recordings
of conversations that have been captured through interception and
monitoring devices. These include phone tapping devices, equipped
with various front-end interfaces in order to connect to oneor
more phone lines and to different phone technologies (PTSN lines,
GSM/UMTS mobile phones and VoIP transmissions), as well as
systems for remote-listening of rooms and other environments,
equipped with microphones and sensors.

Usually the device is instructed to listen and record conversa-
tions in an autonomous way. In a centralized system for phonecall
interception, a front-end interface will detect an estabilished call
involving a monitored line, and a control unit will begin therecord-
ing of the conversation. In a remote-listening device, the monitored
conversation will be sent to a receiving unit, most typically through
a GSM connection: in both cases the recorded signals suffer from
the artifacts introduced by voice encoding and/or channel distor-
tions. Moreover, some kind of additional encoding is performed at
the receiver side for compact storage purposes, e.g. a perceptual
encoding like MPEG-2 Layer III format.

In a listening session, the operator is prompted with a list of
available recordings, labeled with date, time, duration and other rel-
evant information (e.g. incoming/outgoing phone numbers in case
of phone calls). This leads to a huge amount of recordings which
have to be listened to, classified and, if needed, transcribed by the
human operator. Although the most time-consuming task is the
transcription, even the initial skimming of the material requires time
especially since the largest part of recorded calls are typically not
interesting for the investigation. There is thus the need toautomate
part of this process.

2.2 A “speaker skimming” application

The system currently being developed aims at applying speaker-
recognition capabilities to the setting-up and browsing ofdatabases
of conversations. Figure 1 provides a schematic overview ofthe
system. The envisaged workflow for system usage starts with the

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1612



�
�
�

�
�
�

GSM/PTSN

Server

L
abeling

Querying

Client/Operator

DB Conversations

DB Speakers

Transmission

Figure 1: Schematic overview of the system under development.

first (and possibly reiterable) training of the system. In this phase
the operator provides the system with recordings for each one of
the known speakers involved in a given investigation, alongwith
identity or tagging information. This speaker database canthen
be used as a reference by the speaker recognition system to an-
notate recorded conversations. After each recording the speaker-
recognition procedure will be activated and will produce a complete
labeling of the conversations, that includes information about iden-
tity of the involved speakers along with the usual timestampinfor-
mations. This provides the operator with additional capabilities for
browsing and managing recorded conversations, in a twofolduseful
way:
• Known speakers can be easily found; searches through the

recordings are possible, with queries like: “Find conversations
involving speaker X and speaker Y between date A and date B”.

• The operators can be warned about the first appearance of
speakers previously unknown to the system; he may then de-
cide to ignore them or, if they are relevant for the investigation,
he can instruct the device to incorporate them in the database.

The application outlined so far requires both speaker indentifica-
tion and speaker diarization functionalities. In the literature the
term speaker diarizationrefers to a recognition task in which an
audio stream containing two or more speakers is partitionedinto
homogeneous segments according to the speaker identity. For the
intelligence applications under consideration here, diarization can
be employed by the operator to detect long-lasting turns in dia-
logues, which are possibly the most informative parts of thecon-
versation. Moreover diarization is needed as a preliminarystep to
proper speaker identification on homogeneous segments.

On a different order of engineering difficulty lies a furtherlevel
of automation, i.e. automatic speech recognition (ASR) capabilities
able to provide transcriptions of the conversations in an automatic
way. This would be of extremely helpful because, along with the
usefulness of transcriptions itself, would also provide aneasy way
to search through calls content.

2.3 Requirements

The system under development should be able to accurately dis-
criminate between at least 50 speakers. This relatively lownumber
is reasonable for medium sized investigations, characterized by a
limited group of speakers, which are the target of the application.
Other applications, such as nation-wide speaker databasesshared
between investigations, are not the focus of this work.

Typical evaluation criteria for a speaker recognition system
look at the trade-off between “false positives” (occurringwhen an
impostor is mistakenly recognized as the target speaker) and “miss”
recognitions (i.e. when the target is not recognized). In accordance
with with the criteria of international NIST Speaker Recognition
Evaluation (SRE) series [9], which gives more importance tothe
reduction of the misses, our application needs to minimize misses

and may instead accept some false positives (since they willbe fur-
ther assessed by a human operator).

The most demanding requirements concern the signals on
which the system will work. For phone and/or cellular lines,a
number of issues are known [8] and include limited bandwidth, un-
known amplitude and phase distortions, noises of various kind, in-
cluding cross-talk. Other issues to deal with include the presence of
environmental noises (stationary or not), and lossy codec artifacts.

Finally, the system has to deal with issues related to intra-
speaker variability, which in this case is more likely to be due to
deliberate fraud attempts rather than usual effects (e.g. mood ef-
fects). The system should thus be flexible and able to face a number
of adverse conditions.

3. A BASELINE SPEAKER RECOGNITION SYSTEM

The system is currently in the first stage of development. Thecur-
rently available software has been implemented in Matlab/Octave
and comprises a fully functional speaker recognition system.
Speaker diarization functionalities are also being developed, but
will not be discussed in the remainder of this paper. The system
is composed of three main components: feature extraction, speaker
modeling, and scoring. In the remainder of this section we discuss
each of these components for the baseline speaker recognition sys-
tem currently employed.

3.1 Feature extraction

The feature extraction step is based on signal energy and MFCC
(Mel-Frequency Cepstrum Coefficients). These features areob-
tained using a standard procedure described in the following. More-
over, many design choices are bases on the ETSI ES-201-108 stan-
dard, used for distributed feature computation. Finally, all the audio
used as input is filtered through a linear-phase antialias filter and
downsampled toFs = 8kHz, in order to work with audio quality
similar to that of the real-world signals under consideration (e.g.
phone signals).

As a first step, the incoming stream is segmented in frames
with length 20 ms, and using an overlap of 50%. The stream is
pre-processed through a Speech Activity Detector (SAD), and only
frames containing actual speech undergo feature extraction. This
pre-processed input signal is denoted assin in the following.

The DC component is removed fromsin using a one-pole HP
filter, and the signal energy is then computed frame-by-frame. The
MFC coefficientscl , are obtained by applying the FFT to the sig-
nal, performing a Mel-frequency scale warping (through usual fil-
terbank analysis [11]), and finally applying a DCT to the log-energy
output of the filters. In addition, the zeroth MFC coefficient, c0, is
computed as the logarithm of the mean ofse. Moreover, the fil-
terbank analysis is preceded by a pre-emphasis of the spectrum,
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that emphasize high frequencies and is obtained using the HPfil-
terH(z) = 1−0.97z−1.

Following established approaches, the obtained MFCC features
are complemented with their delta coefficients (see e.g. [14, 5]). The
final feature vectors belong to a feature feature space hereafter de-
noted asF , which has a number of dimensions equal to the number
of features extracted from each frame. The features obtained from
a sequence of frames form a cloud of points in the spaceF .

3.2 Speaker modeling

Statistical modeling of speakers is based on the widely usedap-
proach, originally proposed by Reynolds [12]. In detail, the para-
metric statistical tool used in this approach is the Gaussian Mixture
Model (GMM). Speaker-dependent GMMs are trained in the space
F , to fit the cloud of features of a given speaker.

A number of normalization techniques may be applied before
GMM training. The most used and effective one is cepstral mean
subtraction (CMS). This procedure is often applied in mismatched
tests, when the train and test handsets (microphones) are substan-
tially different (eg. electret vs. carbon microphones). Asdiscussed
in Sec. 5, the tests reported in this work are conducted on theTIMIT
database, which does not contains training-test mismatches. For this
reason CMS is not used in this particular case.

The training procedure for the GMM is based on a form of EM
(Expectation-Maximization) algorithm. Feature vectors are first
grouped in clusters using some standard clustering method,e.g.
K-means, hierarchical clustering, or the like. The initialcluster-
ing provides an initialization for the EM algorithm. More precisely,
the codebook vectors found by the clustering are used as a first esti-
mation of the means for the multivariate gaussians which compose
the GMM.

The expectation (E) and the maximization (M) phases are exe-
cuted alternately until convergence. An estimation of samples mean
and variance (M step) is followed by an evaluation of the estimated
density (E step), which undergoes a normalization phase before the
next M step [3]. At the end of the training phase, one GMM is
obtained for each speaker.

The testing phase makes use of the models to obtain a score
which associates a given test utterance with a speaker model.
MFCCs vectors are extracted frame-by-frame from the test sen-
tence. Each vector is then evaluated against each gaussian of
the speaker model, providing the likelihood for the corresponding
speaker model. More precisely, the current implementationmakes
use of the log-likelihood.

As a final result, a test utterance produces a score for each
speaker model; the models are then sorted by likelihood in descend-
ing order, with the topmost being the most probable one. The final
classification is based on the usual maximum-likelihood classifica-
tion rule.

4. RECOGNITION OVER ACOUSTIC CLASSES

This section presents an improved approach to speaker recognition,
that is expected to be more robust than the baseline system de-
scribed in the previous section, with respect to typical sources of
signal degradation [8].

The basic idea is to exploit the time-varying spectral character-
istics of a speech signal in order to train specialized statistical mod-
els. By defining a certain numberNc of acoustic (e.g., phonetic)
classes, a speech signal can be segmented into successive segments,
each belonging to one class. Then,Nc speaker-dependent gaussian
mixture models can be trained, one for each acoustic class. The mo-
tivation behind this approach is the intuition that grouping features
over similar phonetic sounds should lead to more regular represen-
tations in the feature spaceF . This, in turn, ensures better perfor-
mances of the GMMs, which are expected to be more indicative of
speaker differences than phonetic differences.

The idea is not entirely new: the original motivation for using
GMMs in text-independent speaker recognition is that each gaus-
sian of a speaker-dependent model shoud represent a spectral struc-

ture associated to a broad phonetic class [11]. Therefore the pro-
posed idea is a natural refinement to a recognition approach based
on GMMs. A similar line of reasoning has been recently followed
by other researchers [4, 10].

4.1 Phonetic features and component classifiers

As described in Sec. 3, in the baseline system a speech signalis
segmented in overlapping frames with constant length, fromwhich
features are extracted. By contrast, here we propose to group fea-
tures according to some criteria and subsequently train a mixture
model for each feature class.

In this work the classes are based on phonetic criteria. Two
families of classes will be used in the remainder of this work. The
first one, termed Narrow Classification (NC), uses five sets: stops,
fricatives, nasals, (semi)vowels, and silences. The second one,
termed Broad Classification (BC), uses three larger sets: vowels,
non-vowels, and silences.

In this preliminary study we make use of the TIMIT database
which, although dated and limited in size, has the advantageof be-
ing fully tagged with phonetic transcriptions. This provides a a
readily available and realiable phonetic segmentation, and the pho-
netic labels can be straightforwardly translated into the NC and BC
classes. In a real-world application, automatic phonetic segmen-
tation must be employed, based either on ASR approaches or on
blind segmentation techniques (e.g. vector quantization). How-
ever we emphasize that the approach proposed here does not need
a full-fledged speech recognizer, but only a “loose classifier” which
should look at the time-frequency characteristics of the phones,
without the burden of complex tools like language models, N-grams
and so on.

The procedure for train/test is then structured as follows:
MFCCs feature vectors are extracted on signal frames with length
20 ms (with 50% overlap). Then (using the TIMIT labeling) each
feature vector is assigned to one of the NC (or BC) classes. There-
fore, five (or three) GMM models (termedcomponent classifiers)
are trained for each speaker. The test phase is carried out ina sim-
ilar way: features are assigned to one phonetic class and then eval-
uated against the corresponding GMM model. For every speaker
we thus obtain a number of log-likelihood scores, which needto be
combined in order to provide a single scoring.

4.2 Ensemble classifier

Classifiers whose decision is based on the outputs of an ensemble
of component classifiers are often namedensemble classifiers. The
scores of individual component classifiers are typically weighted
through a gating subsystem, in order to generate the ultimate clas-
sification [3].

For each test sentence we build a score matrixS with Nc
columns (whereNc is the number of employed classes,Nc = 3,5
for NC and BC). The columns ofS are then filled with the indexes
of the Nmax speakers which received the highest scoring, for each
class, sorted in decreasing order. We make use of two weighing
vectors:
• Class weightswc: take into account different levels of reliabil-

ity of the phonetic classes;
• Order weights wo: take into account different levels of relia-

bility of the Nmaxordered scores, where the topmost places have
more chance to indicate the correct speaker indexes

A weight matrixW is then computed asW = wo
T
wc. The scor-

ing procedure for the ensemble classifier defines a “votes vector” v

with a number of elementsNs equal to that of the speaker models.
The vectorv is filled according to the formula:

vk = ∑
Si, j=k

Wi, j ∀i ∈ [1,Nmax], j ∈ [1,Nc],k∈ [1,Ns] (1)

Eq. (1) scans through the matrixS; each time the speaker indexk is
found in the elementSi, j , the votevk is increased by the associated
weightWi, j . When the test sentence features have been evaluated
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against all the speaker models the vectorv contains the ensemble
classifier output; in particular the topmost probable speaker model
is the one with highestvk value.

The choice of the weight vectorswc andwo is critical in order
to obtain optimal ensemble decisions. For each ensemble system we
use three different class weight vectorswc, which lead to different
results:

• wequ assign an equal weight value 1 to each class recognizer
• weur contains euristic weights determined from ad-hoc numer-

ical tests
– for CNC: weur = [0.102,0.201,0.102,0.394,0.201]
– for CBC: weur = [0.253,0.495,0.253]

• west is an estimate of the optimal class weights, computed as a
posterior normalized sample mean of the hits numbers for each
class;
– for CNC: west = [0.0982,0.147,0.238,0.329,0.188]
– for CBC: west = [0.285,0.482,0.234]

The optimum value for vectorwo can not be trivially estimated.
In this study we use an empirically determined set of weights, in
which monotonically decreasing values assign more weight to the
topmost placed models.

The ultimate log-likelihood scores for speaker models in
the ensemble classifier are computed by keeping track of the
log-likelihood output for each GMM class model for all speakers.
If the maximum value inv is thek-th, the score for thek-th speaker
model is taken to be the highest log-likelihood among all voting
contributors to the valuevk.

5. RESULTS

5.1 Material

All the results reported below are conducted on the TIMIT database
which contains 630 speakers, 438 males and 192 females; there are
10 utterances for each speaker, with typical durations in the 10 s
range. Moreover, the speakers are grouped in 8 geographicalre-
gions following their dialect accent. The last available grouping is
the type of phonetic content of the utterances. The 10 sentences
spoken by each speaker are choosen in this way:

• 5 are phonetically-compact sentences, designed to well cover all
the phones pairs (marked SX)

• 3 are phonetically-diverse sentences which add diversity in sen-
tence types and phonetic contexts (marked SI)

• 2 are dialect “shibboleth” sentences equal for all speakers
(marked SA)

All the results reported below are obtained using the entirespeakers
set. The training features are extracted from the 2 SA, the 3 SI and
the first 3 SX sentences of each speaker. The test sets are build
around the remaining 2 SX utterances.

One shortcoming in the use of TIMIT is the limited amount
of train/test material, which has led to limitations in our study. Cur-
rent state-of-the-art systems typically employ 32 gaussians to model
each speaker. However, limited training material, together with the
further grouping into phonetic classes, cause component GMMs
with 32 gaussians to overfit the density, resulting in the divergence
of the EM algorithm. This forces us to use a lower number of gaus-
sians, namely 4 for the component classifiers.

5.2 Performance of baseline system and ensemble classifier

In all the results reported here, performance is represented through
DET curves [7], which are commonly used in the evaluation of
speaker recognition systems (in particular the NIST SRE series),
and are suited to represent performance in task that involvea trade-
off of errors (misses and false-alarms).

Figure 2 illustrates the performance loss of the baseline system
B with respect to the number of gaussians used. In the following,
for the sake of coherence in results, we will assumeB4 as our base-
line system.
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Figure 2: Performance of the baseline systemB with varying num-
bers of gaussians:B4, B8, B16 andB32, from top right to bottom
left.
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Figure 3: Performances ofB4 baseline system applied on clean
TIMIT (dotted), TIMIT corrupted with white noise (dashed),
TIMIT corrupted with babble noise (solid) (the latter have SNR
10 dB).

The sameB4 system has been applied to databases which differ
for the quality of the recordings, namely:
• clean TIMIT recordings
• TIMIT recordings corrupted with white noise (SNR 10 dB)
• TIMIT recordings corrupted with babble noise (SNR 10 dB)

Figure 3 shows the resulting DET. As expected the performance de-
cays when noisy speech is used, and the white noise causes stronger
degradation with respect to babble noise.

The baseline systemB4 is now compared to the system using
the ensemble classifier with both the NC and BC classifications, de-
noted asCNC andCBC, respectively. The ensemble scoring for both
CNC andCBC uses theNmax= 15 speakers with highest likelihoods
in all acoustic classes. The DET plots in Fig. 4 show that bothCNC
andCBC occupy a lower position with respect toB4, and thus ex-
hibit a markedly better performance. The figure also reportsthe
DET for B32, showing that its performance falls between those of
theC· systems. This suggests that theC· systems have comparable
discriminative properties with respect toB32, although they use a
lower number of gaussians and therefore require significantly lower
computing resouces.

The systems are also compared in terms of correctly retrieved
speakers. Table 1 reports results obtained on the 630 TIMIT speak-
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Figure 4: Performance ofCNC (dashed),CBC (dotted) andB4 and
B32 (both solid, see labels) on clean audio.

ers. It can be noticed thatB32 achieves almost optimal perfor-
mance. More interestingly, the systems using an ensemble classifier
produce better results overB4, with all the weighting choices. The
column “Overall” reports the sum of hits by all classes in thefirst
Nmax= 15 places (see Sec. 4.2): these results show that the num-
ber of speakers which the component classifiers have recognized in
the topmost positions not only largely exceeds that ofB4, but also
approaches the total number of speakers. If on one hand this re-
sult let us infer the suboptimality of the ensemble scoring approach
currently employed, on the other hand it suggests that the proposed
ensemble classifier can outperform the baseline systemB32 if suf-
ficient training material is provided.

6. CONCLUSIONS

The paper has described the characteristics of a “speaker skimmer”
for intelligence applications, with a focus on phone tapping and en-
vironmental interception. We have provided an overview of the
functioning of the application, and depicted its main performance
requirements, with particular respect to issues usually found in real-
world recorded signals, which deteriorate the recognitionperfor-
mances. The last sections of the paper present an innovativeap-
proach which uses an ensemble of GMMs for every speaker model,
each trained on a different subset of MFCCs features groupedby
phonetic classes.

The results presented in this work are still preliminary andsuf-
fer from a number of shortcomings. The most important one is the
unavailability of results on real-world noisy recordings.Moreover
the results show that the method currently employed to combine the
output from the component classifiers is not optimal. Nonetheless,
the study provides an initial confirmation of the effectiveness of the
proposed approach.

Current work is targeted at studying more in depth how acous-

System Weights Hits in # pos. Sum Overall
1 2 3

B32 - 627 1 0 628 -
B4 - 532 42 0 574 -

CNC

weur 538 26 18 582 622
west 562 20 10 592 622
wequ 568 18 8 594 622

CBC

weur 565 29 14 608 628
west 561 33 16 610 628
wequ 548 38 10 596 628

Table 1: Numbers of correctly retrieved speakers for all systems.

tic classes are self-organized among gaussians in each GMM [11,
Ch. 3]. Moreover the presented results are intended to be a starting
point towards the development of an ensemble classifier in which
different feature sets, specifically designed for the acoustic charac-
teristics of each class, are used for each GMM. Many interesting
alternative sets exists; the excitation source features [2] and the vo-
cal tract LSF (line spectral frequencies) [6] have both proved to be
useful. Furthermore, a complementary feature set is represented
by prosodic features, which, by capturing long-term signalcharac-
teristics, are expected to improve the recognition [13]. Finally the
proposed approach is suited to be combined with other techniques
currently investigated in the literature, particularly with “phonetic
speaker recognition” systems [1], i.e. speaker-recognition systems
based on differences in dynamic realization of phonetic features.
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