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ABSTRACT
This paper addresses the problem of non-invasive respiratory
rate (RR) monitoring using single channel tracheal sound
(TS) recordings. We have recently developed a robust res-
piratory phase segmentation method based on genetic algo-
rithm (GA) which works well only for preprocessed clean
TS. Therefore, an enhanced respiratory phase monitoring
method is proposed in this paper by exploiting the signal re-
dundancy to our existing method. In this context, appropriate
overlapping windows have been applied to ensure sufficient
redundancy of TS signals. The performance of the enhanced
method is analyzed for different types of real TS and stan-
dard preprocessed TS. The average accuracy of respiratory
phase segmentation found for real TS is comparable to that
of the standard preprocessed data by our proposed method.

1. INTRODUCTION

Accurate estimation of respiratory rate (RR) plays an im-
portant role in many clinical situations. Many adventitious
sounds as indications of infectious and respiratory diseases,
can be clinically characterized by their duration in respiratory
cycle and relationship to the phase of respiration [1]. Thus it
is necessary in adventitious sound quantification to segment
the respiratory sound into individual respiratory cycles their
respective inspiratory and expiratory phases. Direct airflow
measurements such as spirometry, are widely used for RR
monitoring, but they have suffered from the limitation which
the accurate flow measurement depends on mechanisms that
affect the natural breathing pattern [2]. This makes the di-
rect flow measurement fails in many situation, especially for
patients with high obstruction in tracheal [3].

Indirect flow measurement and RR monitoring methods
by acoustical analysis of TS has therefore been recently pro-
posed as an alternative solution for RR monitoring. Respi-
ratory phase segmentation methods based on spectral and
temporal analysis of transformed TS have been proposed
in [2][4][5]. Since the existing methods depend on either
spectral content or short-term energy of the signal, the de-
tection results are strongly affected by the amplitudes of the
input signals. In addition, attempts have also been made to
relate flow with respiratory sounds. Airflow has been esti-
mated using respiratory sounds by applying different models
with training dataset required [6][7]. A relatively high esti-
mation accuracy has been achieved in [7] but the predefined
linear model applied does not support flow estimation for dif-
ferent types of TS other than normal TS.

In this paper, an enhanced RR monitoring method for
real TS recordings has been proposed by extending a re-

cently developed GA based respiratory phase segmentation
method [8]. The relationships between signal redundancy,
disjointness and wide-sense stationarity have been investi-
gated. The redundancy of the signals using different over-
lapping windows are measured in terms of spectrum confor-
mity with 1st order auto-regressive (AR(1)) spectrum. This
ensures the appropriately windowed signal with sufficient re-
dundance is used for SampEn calculation. As the estimated
number of respective respiratory phases present in TS is ini-
tially obtained, a new evaluation function is calculated based
on SampEn of the appropriately windowed signal and a het-
erogeneity measure. A multi-population GA is then em-
ployed using the evaluation function to determine the loca-
tions of phase boundaries. The proposed method is thus ef-
fectively monitoring RR by improving the signal redundancy.

2. METHOD

2.1 Data

TS is chosen due to its distinct respiratory phases and close
relationship with respiratory flow. The origin of TS is the
vibrations in tissues caused by the turbulence occurred dur-
ing the airflow into or out of the lungs. It is captured by
a microphone placed over the suprasternal notch. A small
time delay is present related to the distance between sound
source and microphone (typically 0.03ms) [9]. TS can be
segmented into four successive phases: inspiratory phase,
end-inspiratory pause, expiratory phase, and end-expiratory
pause.

The preprocessed TS recordings from [10][11] and dif-
ferent types of real TS recordings corrupted with heart
sounds and ambient noise are used for testing and analysis.
TS recordings are acquired by using a single electret con-
denser microphone (ECM-77B, Sony Inc., Japan). Test sub-
jects were asked to breathe normally with no targeted flow
when a 600 seconds recording was done for each subjects
with sampling frequency of 44.1kHz. The segmentation al-
gorithm has been tested using a total of 17 TS recordings as
well as 10 preprocessed TS signals. Each TS recording con-
sists of 10 breathing cycles whereas each preprocessed data
has duration of 20 seconds.

2.2 Signal Redundancy Enhancement

As a measure of information richness of the signal, a high
redundancy implies high ability that past sections of the sig-
nal to provide information about the present sections. Dis-
jointness of a signal can be defined as the degree of non-
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overlapping of the signal. As a measure of information rich-
ness of the signal, signal with high redundancy results in
low disjointness. Since the proposed method is based on
GA which works effectively only under high data sufficiency
condition, information redundancy has to be ensured or the
signal has to be modified for highly disjoint conditions. In
this way, redundancy measurement is required as the initial
step for the proposed algorithm ensuring the signal to have
sufficient redundancy.

In this paper, overlapping technique has been adopted to
enhance information redundancy of the signal. It observes
that only correct overlapping can produce AR WSS sequence
that is highly redundant with low disjointness. The signal is
first enframed using a gliding window with different overlap-
ping ratios ranging from 0% to 80%. The spectra of the en-
semble average of the frames obtained using different over-
lapping ratios are calculated. For an input TS signal, the most
appropriate overlapping ratio is found by measuring the rel-
ative conformity between the obtained spectra and an AR(1)
smooth spectrum. The conformity is simply measured in
terms of spectral distortion as

Dii =
ko

∑
k=1

|Γ(k)−Eii(k)|2 (1)

where k is the frequency spacing index k = 1,2, ...,K, with
K = 64 in this context. ko is the band of interest for con-
formity calculation corresponding to the first spectral peak
since AR(1) is applied here. Eii refers to the spectrum of the
ensemble average of the windowed frames with iith overlap-
ping ratio. In this paper, ii = [1 17] refers to overlapping ra-
tio [0% 80%] with step size 5%. Furthermore, Γ representing
an AR(1) spectrum, is calculated as a frequency correlation
function (FCF) using the expression

Γ(k) =
1−α

1−αe− j2πk/K
(2)

where 0 < α < 1 which is set as α = 0.9 in this paper. The
FCF is WSS and depends only on frequency spacing k. The
conformity test is done iteratively by selecting the overlap-
ping index ii with the minimum Dii. The corresponding over-
lapping ratio is used lastly to modify the signal for redun-
dancy improvement.

2.3 Sample Entropy

Sample entropy (SampEn) is applied on the appropriately
windowed signal to measure the complexity and regularity of
time series. SampEn(m,r,N) is chosen as it does not count
self-matches of the time series. This ensures the consistency
of the measurement and reduces the dependency on the sig-
nal length. It is defined as the negative natural logarithm of
the conditional probability that a data set of length N, hav-
ing repeated itself within a tolerance r for m points, will also
repeat itself for m+1 points, without allowing self-matches.

For an input signal u of length N, {u( j) : 1 ≤ j ≤ N}
forms the N−m+1 vectors xm(i) for {i|1 ≤ i ≤ N−m+1},
where xm(i) = {u(i + k) : 0 ≤ k ≤ m− 1} is the vector of m
data points from u(i) to u(i + m− 1). In this context, only
the first N −m vectors of length m are considered to ensure
that, xm(i) and xm+1(i) are defined for 1 ≤ i ≤ N −m. Let
Bm(r) is the probability that two sequences will match for m
points and Am(r) is the probability that two sequences will

match for m + 1 points. Bm
i (r) is defined as (N −m− 1)−1

times the numbers of vectors xm( j) within r of xm(i), where
1≤ j≤N−m, and j �= i to exclude self-matches. Then Bm(r)
is defined as

Bm(r) = (N −m)−1
N−1

∑
i=1

Bm
i (r) (3)

Similarly, Am
i (r) is defined as (N −m−1)−1 times the num-

bers of vectors xm+1( j) within r of xm+1(i), where 1 ≤ j ≤
N −m and j �= i. Then set Am(r) as

Am(r) = (N −m)−1
N−1

∑
i=1

Am
i (r) (4)

Finally, sample entropy (SampEn) is calculated by

SampEn(m,r,N) = − ln
Am(r)
Bm(r)

(5)

A low value of SampEn reflects a high degree of self-
similarity in time series. With increasing irregularity, a larger
value of SampEn is obtained.

2.4 Multi-population Genetic Algorithm

GAs are numerical optimization algorithms operate on a pop-
ulation of strings as a group of potential solutions of a prob-
lem [12]. Fitness of each string is calculated in decoded form
by applying an evaluation function to measure how good or
bad the solutions within the population. At each generation,
a new set of solutions are produced by selecting the fittest
strings in the problem domain and through the application of
the genetic operators such as crossover and mutation.

2.4.1 Initial Population

In order to detect both start and end locations of each seg-
ment, a population of GA is generated with the strings whose
length is two times the total number of segments as obtained
earlier. A string is real-valued which represents the locations
of the candidate segment boundaries in ascending order. Al-
though the binary-coded GAs are the most commonly used
representation, a more natural real-valued representation is
used in this system to increase the efficiency of GA. Using
the real-valued strings, there is no need to convert strings to
solution vectors to evaluate their fitness. Thus it would be
faster in computation.

2.4.2 Evaluation Function

In GAs, an evaluation function or fitness function is usually
used to evaluate the performance of the strings in the prob-
lem domain. In order to obtain accurate boundaries of each
segment, an evaluation function is designed using the hetero-
geneity measure and SampEn. This function simultaneously
maximize the homogeneity within the segments and hetero-
geneity among different segments using sample entropy.

In this way, SampEn of the original segmenting signal is
calculated first to investigate the dynamics. To achieve feasi-
ble computational time and to make the proposed algorithm
tractable, SampEn is calculated on each data set of length
100 (i.e. N=100) within a tolerance r of 0.15 × SD for 1
point (i.e. m=1). Here, SD is the standard deviation of the
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data set. Let Hw be the total within-segment homogeneity
and Hb denotes the total between-segment heterogeneity, a
segmentation evaluation function is defined as

H =
Hb +1

Hb +Hw +1
(6)

where total within-heterogeneity Hw is defined as

Hw =

S
∑

i=1
Liσ2

i

L
(7)

where L is the total length of the segmented signal, Li is the
length of ith segment, σ2

i is the variance of the SampEn of the
ith segment and S is the number of segments in the segmented
signal. The between-segment heterogeneity, Hb, is defined
as the average Euclidean distance between the mean value of
the SampEn of any two adjacent segments.

Hb =
∑

(i, j)∈ad jacent,i�= j
‖μi −μ j‖2

ns
(8)

where ns is the total number of the adjacent segments in
the segmented signal, μi and μ j are the mean value of the
SampEn of the ith and jth segments. H becomes one when
the internals of all segmented respiratory signals are com-
pletely homogeneous.

2.4.3 Evolution Procedure

The proposed algorithm applies the multiple subpopulations
approach for the evolutionary process. The initial popula-
tion is created using 8 subpopulations containing 20 indi-
viduals each where each of them can evolve parallelly using
crossover and mutation over generations. At each genera-
tion, 90% of the individuals with higher fitness values within
each subpopulation are selected for breeding using a stochas-
tic universal sampling function which has minimum spread
and zero bias. By applying discrete recombination crossover,
the new offsprings within each subpopulation are produced.
In this segmentation method, offsprings are inserted into the
appropriate subpopulations depending on fitness-based rein-
sertion with a rate of 0.9. In this multi-population GAs, mi-
gration of individuals between subpopulations is performed
at every 20 generations with a migration rate of 0.2. After
GA iterates for maxgen times (here maxgen=80), the evolu-
tion of this GA stops. The best individual with the maximum
fitness value presents the optimized solution for the segments
boundaries of the segmented signal.

3. RESULTS AND DISCUSSION

3.1 Redundancy Improvement

Fig. 1 shows the plots of the spectra Eii of a windowed
wheeze recording with 0%, 50%, and 80% overlapping ra-
tios together with the FCF Γ of the AR(1) model. These
plots illustrate the differences in conformity between Eii and
Γ. As seen in Fig. 1, the windowed signal with 50% overlap-
ping window is the one with the closest conformity within the
band of interest and thereby is chosen for SampEn calcula-
tion as well as the following GA-based phase segmentation.

With 0% overlapping, the energy spreading in spectral do-
main is not sufficient implying disjointness and information
insufficiency in temporal domain. While with 80% overlap-
ping ratio, the high decimation effect causes severe aliasing
for which extra spectral peaks are warped back to distort the
spectrum heavily.

Therefore, high redundancy in time has been introduced
by applying highly overlapping window to the signal. This
implies energy spreading towards higher frequency so that
spectral overlapping is less likely to occur. Then the infor-
mation redundancy in spectral domain becomes insufficient.
However, increasing spectral redundancy suffers from the re-
duced temporal resolution. Thereby a compromise needs to
be taken in order to balance between temporal and spec-
tral redundancy by choosing appropriate overlapping ratio
in windowing. Furthermore, compared to non-tonal signal
(such as normal TS), a highly redundant tonal type signal like
wheeze/stridor is less likely to induce significant frequency
spreading. Therefore, time resolution should be favored by
increasing the overlapping ratio for wheeze/stridor.
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Figure 1: Frequency correlation function Γ for AR(1) model and
spectra of the ensemble average of the frames Eii of a wheeze
recording with 0%, 80%, and 50% overlapping windows.

3.2 Performance Analysis

Table 1 presents the performances of the proposed segmen-
tation method on both the preprocessed data from [10][11]
and the real TS recordings. Mean and standard deviation
(μ ±σ ) for estimation error between actual respiratory phase
locations identified by highly experienced doctors and the
estimated phase locations by the proposed method are cal-
culated. While the estimation error ε is defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εstart = 1
JS ∑JS

js=1 |
Pjs

est−Pjs
std

D js
std

|

εend = 1
JE ∑JE

je=1 |
Pje

est−Pje
std

D je
std

|
ε = εstart+εend

2

(9)

where ε is the percentage errors for starting/end positions of
each respiratory phases respectively, with JS/JE represent-
ing the total number of starting/end points where J = JS+JE

2 .

Also, Pjs/ je
est are the starting/end positions of the jth respi-

ratory phase identified by the proposed method and Pjs/ je
std

are those identified by the doctors. Djs
std is the same as Dje

std
which is defined as the duration of the jth respiratory phase.
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Figure 2: Illustrative plots of (a) real stridor recording and (b)
preprocessed normal TS signal. Along with their respective
actual respiratory phase locations identified by highly experi-
enced doctors (dotted line), and the estimated phase locations
by the proposed method (solid line).

Table 1: The estimation errors (μ ±σ )(%) of the proposed method
on preprocessed signals and real recordings of different types of TS

Signal Segmentation Error (μ ±σ )(%)
Type Preprocessed Signals Real Recordings

Normal TS 1.78±1.19 1.30±1.21
Stridor 2.71±3.33 3.29±4.83
Wheeze 1.22±1.90 1.76±1.74
WNS 1.35±1.18 3.46±3.97

For performance evaluation on different types of TS signals,
the error is calculated for each subject using (9) and then
averaged over the subjects. The types of TS signals used in-
clude 9 normal TS (5 real recordings), 7 pure wheezes (5 real
recordings), 6 pure stridor (4 real recordings), and 5 mixture
of wheeze and stridor (WNS) (3 real recordings).

Fig. 2 illustrates the performance of the proposed seg-
mentation method on the samples of the data used. The
actual respiratory phase locations identified by highly ex-
perienced doctors are displayed together with the estimated
phase locations by the proposed method. Despite the large
diversity in their waveforms, the performance of the pro-
posed method is comparable for the preprocessed data and
noisy TS recordings, as indicated in Table 1. This shows that
presence of the heart sound interference as well as other am-
bient noises do not affect the wide-sense stationarity of the
appropriately windowed signals. The robustness of the pro-
posed method has thus been verified under noisy conditions.

4. CONCLUSION AND FUTURE WORK

In this paper, an enhanced respiratory phase segmentation
method for different types of TS is introduced based on ge-
netic (GA) approach. The variability of the signals in terms
of disjointness and information redundancy has been investi-
gated thoroughly. The incorporation of disjointness measure-
ment enhances the robustness of our GA method by modify-
ing signals to be sufficiently redundant. By using SampEn
and heterogeneity measure, the evaluation function of GA is
designed. The segmentation results for various types of TS
corrupted with heartbeats and ambient noise are found quite
accurate, especially when the existing method only perform

well on the processed signals without these noise.
Furthermore, for initial estimation of total segment num-

ber, many approaches (e.g. using onset or other detection
techniques) can be suitable for the proposed segmentation
method. As the performance of the proposed method does
not depend heavily on the accuracy of the total segment num-
ber estimated, only a rough estimation by using any detec-
tion technique is required. Moreover, the independency on
threshold values makes the method robust and suitable for
segmentation of real TS recorded under noisy conditions.

To our best knowledge, GA based segmentation method
for real tracheal sound has not been published earlier. Thus
the comparisons with a few existing ANN-GA or GA meth-
ods applied in other applications including flow rate mea-
surement with the trained phase segments and lung sound
identification, will be included in the future full-version of
our paper.
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