
ROLLING ELEMENT BEARING FAULT DIAGNOSIS IN ROTATING MACHINES OF
OIL EXTRACTION RIGS

E. Mendel1, T. W. Rauber1, F. M. Varej̃ao1, and R. J. Batista2

1 Department of Computer Science, Federal University of Espı́rito Santo
Av. Fernando Ferrari s/n, 29060-970 Vitória, ES, Brazil
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ABSTRACT

This paper presents vibration analysis techniques for
fault detection in rotating machines. Rolling element bearing
defects inside a motor pump are the subject of study. Signal
processing techniques, like frequency filters, Hilbert trans-
form, and spectral analysis are used to extract features used
later as a base to classify the condition of machines. Also,
pattern recognition techniques are applied to the obtained
features to improve the classification precision. In a previ-
ous work, a graphic simulation was used to produce signals
to illustrate the idea of the method. In this work we examine
the performance of this method for monitoring bearing con-
dition when applied to rotating machines of oil rigs, that is,
when applied to real problems.

1. INTRODUCTION

Detecting or even preventing failures in complex machines
usually benefits in terms of economy and security [16].
Continuous technological development contributes to the in-
crease of the lifetime of a rolling bearing. However, defects
can occur due to the great number of critical processes where
bearings are employed. The precocious diagnosis of possible
faults constitutes an important activity to prevent more seri-
ous damages. Predictive maintenance [14], from the analysis
of vibration signals produced by the process, allows to mon-
itor and make conclusions about the operational state of the
machine, in addition to that allows taking appropriate mea-
sures to extend the time of use, and to minimize costs resul-
tant from the machine’s downtime.

The objective of the signal analysis is the discovery of
discriminative features that allow the identification of prob-
lems in their early stages. In particular, bearing problems
manifest in alterations of the vibration patterns of the ma-
chines. Especially for defects in rolling element bearings
envelope detection[7] is an indicated technique because
the mechanic defects in components of the bearing man-
ifest themselves in periodic beatings, overlapping the low
frequency vibrations of the entire equipment, for instance
caused by unbalance of the rotor of the pump. The Hilbert
transform [19] plays an important role in the sequence of
steps of the analysis. The main idea is the separation of the
defect frequency and the natural frequency of the beating by
demodulation.

In a previous work [8], experimental and computationally
simulated data were used to illustrate the idea and effective-
ness of the vibration signal analysis and envelope method

to identify incipient failures of rolling bearing. Many pub-
lications [6, 15] have also discussed the detection of bear-
ing faults but only using well behaved data from a controlled
laboratory environment. When an experimental benchmark
is used, the fault classes are perfectly known. This permitsa
doubtless labeling of the data sample for supervised learning.
Machine simulations can assist in several aspects of system
operation and control, being useful to do preliminary investi-
gations about the capability of the method, though it cannot
completely simulate all real-world situations. It is worthto
mention that there are a few papers which have investigated
rolling bearing faults analyzing some case studies [2,11] and
also looked at complex cases, for instance, from helicopter
gearboxes that provide a particularly difficult situation with
respect to bearing diagnostics [12].

In this paper we are interested in investigating a well-
known method for monitoring the bearing condition applied
to real world data obtained from rotating machines of oil ex-
traction rigs. Certainly, more sophisticated research related
analysis techniques have been developed, but the one pre-
sented here is implemented in the majority of commercial
and diagnostic systems. Therefore we focus our attention
on how this technique will behave in a real world situation.
The availability of significant amounts of real data from oil
extraction rigs has motivated this work. To the best of our
knowledge this is the first work to investigate bearing condi-
tion diagnosis method with statistically significant amounts
of real data in this context.

Most industrial rotating machinery contains components
which will produce additional noise and vibration whereas
a simulated environment is almost free from external vibra-
tions. There are a number of factors that contribute to the
complexity of the bearing signature that could not be simu-
lated. Real bearing faults were used to supply this gap. The
results suggest that this technique is robust enough to be sat-
isfactorily applied to a real life fault recognition application
given accurate information about rolling bearing condition.
We furthermore compare some classifier algorithms by ROC
analysis [4], a classifier performance evaluation tool beyond
the usually employed classification accuracy.

The rest of the paper is organized as follows: In sec-
tion 2, the vibration analysis in rotating machines is shortly
described. In section 3 real examples are shown and some
discussions about them are made. The adopted classification
methodology is described in section 4. Section 5 presents the
results and comparisons of classifier’s performance followed
by conclusions in section 6.

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1602



2. VIBRATION ANALYSIS IN ROTATING
MACHINES

Motor pumps, due to the rotating nature of their internal
pieces, produce vibrations. Accelerometers strategically
placed at points next to bearings and motors allow the dis-
placement, velocity or acceleration of the machine over time
to be measured, thus generating a discrete signal of the vibra-
tion level. Fig. 1 shows a typical positioning configurationof
accelerometers on the equipment. In general, the orientations
of the sensors follow the three main axes of the machine, that
is, vertical, horizontal, and axial.

Figure 1: Motor pump with extended coupling between mo-
tor and pump. The accelerometers are placed along the main
directions to capture specific vibrations of the main axes.
(H=horizontal, A=axial, V=vertical.)

In the presence of bearing defects there are vibrations that
overlap the signals of normal operation conditions. Besides
that, faults from other problems of the machinery can also
occur. An example are the lower frequency vibrations which
typically occur in case of unbalance of the rotating parts of
the pump. Whenever a collision between a defect and some
bearing element happens, a short duration pulse is produced.
This pulse excites the natural frequency of the bearing, re-
sulting in an increase of the vibrational energy.

2.1 Faults Model

The structure of a rolling bearing allows establishing a model
of possible faults. Fig. 2 illustrates a basic model of a bear-
ing with the rolling elements, the inner and outer raceways,
and the cage. The bearings, when defective, present charac-
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Figure 2: Sectional view of a bearing model [9].

teristic frequencies depending on the localization of the de-
fect [9]. Defects in rolling bearings can be foreseen by the

analysis of vibrations, detecting spectral components with
the frequencies (and their harmonics) typical for the fault.
There are five characteristic frequencies at which faults can
occur. They are the shaft rotational frequencyFS, funda-
mental cage frequencyFC, ball pass inner raceway frequency
FBPI, ball pass outer raceway frequencyFBPO, and the ball
spin frequencyFB. The characteristic fault frequencies, for a
bearing with stationary outer race, can be calculated by the
following equations [9]:
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whereDb is the ball diameter,θ is the load angle based
on the ratio of axial to radial load,Dc is the cage diame-
ter, andNb is the number of balls. These equations consider
that the rolling elements do not slide, but roll over the race’s
surfaces. Of course, there is virtually always some slip and
these equations give a theoretical estimate which would vary
by 1-2% from the actual values [12]. These frequencies will
only be present in the vibration spectrum when the bearings
are really defective or, at least, when their components are
subject to tensions and deformations that can induce a fault.

2.2 Envelope Analysis

The defect detection based on the frequencies of (1) to (4)
follows a set of consecutive stages usually denominated as
envelope detection [5, 7]. The envelope is an important sig-
nal processing technique that helps in the identification ofthe
bearing defects, extracting characteristic frequencies from
the vibration signal of the defective bearing. The objective is
the isolation of these frequencies and their harmonics, previ-
ously demodulated by the Hilbert transform. With this anal-
ysis it is possible to identify not only the occurrence of faults
in bearings, but also identify possible sources, like faults in
the inner and outer race, or in the rolling elements.

The first step in amplitude demodulation is signal filter-
ing with a band-pass filter to eliminate the frequencies asso-
ciated with low frequencies defects (for instance unbalance
and misalignment) and eliminating noise. The frequency
band of interest is extracted from the original signal using
a FIR filter [5, 10] in the time domain. The selection of the
demodulation band was based on the SKF industry filter stan-
dard (500Hz-10kHz). Although it is difficult to properly des-
ignate the filter band to filter out a complete vibration mode,
it is out of the scope of this paper to investigate techniques
for the optimal choice of the demodulation band to separate
the bearing signal from masking noise, such as Spectral Kur-
tosis [1, 13]. The vibration signals of interest have repeti-
tive high frequency manifestations as a consequence of the
excitation of high frequency resonances in regular intervals.
These free vibrations generated by the bearing defects are
modulated in amplitude by the sequence of repetitive impacts
and by the damping effect.
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The direct frequency analysis of the signals does not pro-
vides much information [5], because in the high frequency
bands there is noise and other defects mixed with the char-
acteristic frequencies of bearing faults. These repeatingfre-
quencies are, however, easily measured in the signal enve-
lope. The envelope detection method (or amplitude demodu-
lation) provides an important and effective approximationto
analyze fault signals in high frequency vibrations and can be
calculated by the Hilbert transform [19]. Given a signalh(t)
in the time domain, the Hilbert transform is the convolution
of h(t) with the signal 1

πt :

h̃(t) := H {h(t)} := h(t)∗
1
πt

=
1
π

∫ ∞

−∞
h(t)

dτ
t − τ

. (5)

The envelope of the signal in the discrete form is then
given by:

E [k] =
√

h2[k]+ h̃2[k] (6)

After the calculus of the spectrum of the envelope, with
the knowledge of the bearing properties, a classification
module is responsible for the diagnosis of the possible fault.

The presence of new peaks in the spectrum, that were
not exact multiples of the shaft rate, was the first indication
that a bearing problem likely existed because true bearing
defects emit frequencies that are non-synchronous with run-
ning speed. In the initial failure stage, the fundamental fre-
quencies are rarely visible in the velocity spectrum and the
greater amplitudes occur only at high order harmonics. No
external feature, such as temperature or audible noise, is al-
tered. Maintenance of the motor pump is not required in this
stage. As the defect progresses, a small increase in energy on
the regions of natural frequencies of bearings is noticed. In
this stage it is possible to identify the presence of one of the
five characteristic fault frequencies by envelope analysis. In
the next failure stage the temperature increases and more and
more fault frequencies harmonics are observed, and the num-
ber of sidebands around on both characteristic frequencies
harmonics and natural bearing frequencies become greater.

3. REAL DATA: ANALYSIS AND DISCUSSION

Usually, research papers in the literature exhibit their results
based on experimental data or even simulated data to cor-
roborate the effectiveness of a given method. This is due to
the limited amount of vibration data available in this area.
Real data cannot be easily gathered. Hence, to investigate
the performance of the previously presented fault detection
method for the diagnosis of real rolling element bearing fail-
ure, real acquisitions were obtained from various oil pro-
duction plants. Measurements were regularly taken during
five years from 25 different oil platforms operating along the
Brazilian coast. A total amount of 3700 acquisitions was col-
lected. Of this total, only 1000 examples had some type of
defect attributed by a human operator relying on his expe-
rience. The remainder represented normal operational con-
ditions. Each acquisition labeled as a fault presents some
kind of defect (not only bearing fault) that can be divided
into electrical, hydrodynamic, and mechanical failures, and
may present several types of defects simultaneously.

The considered motor pumps are composed of one-stage
horizontal centrifugal pumps coupled to an AC electric mo-
tor. The measurements are collected at different points, all in

machine bearing housings, to detect various types of defects.
Also, vibrations are measured along axial, horizontal, and
vertical directions. Vibration signals are collected by means
of a closed, proprietary vibration analyzer equipped with a
sensor in the time domain and vibrational signal techniques
were applied within the system.

There are a number of factors that contribute to the com-
plexity of the bearing signature that could not be simulated
but must be taken into consideration. Only with real data it
is possible to work under real environment conditions. We
will show and analyze some real examples to illustrate how
the theory appears in practice. First of all, variations of the
bearing geometry and assembly make it impossible to pre-
cisely determine bearing characteristics frequencies. The
fault severity progress can alter the bearing geometry, con-
tributing to the increase of complexity of the diagnosis pro-
cess. Operating speed and loads of the shaft greatly affect
the way and the amount a machine vibrates causing bearing
basic frequencies to deviate from the calculated value. In a
real-world environment, the motor speed cannot keep rotat-
ing at a constantFS precisely. This fluctuation can be caused
by external factors such as the performance of the controller,
noise, and disturbance in the power system. It is important to
consider band frequency range around the characteristic fre-
quencies. Consequently these range needs to be large enough
to solve this problem without creating another one.

Fault signature appear to be very different at advanced
stages of severity. As the bearing gets worse the number of
sidebands increase. What may have started out as a relatively
sharp peak may appear to be spreading out to cover a wider
frequency range [17]. The raise of sidebands can be seen in
Fig. 3 indicating that the condition of this bearing is worsen-
ing.

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800

A
m

pl
itu

de

Frequency (Hz)

Figure 3:FC sidebands aroundFBPO harmonics (represented
as dashed line)

The vibration signature of Fig. 4 shows the existence of
multiples of the rolling bearing cage characteristic frequency
indicating that the bearing condition is critical.

The real data has an additional difficulty due to a lot of
random vibration components from other parts of the ma-
chine than the bearing being examined. The band-pass fil-
ter and envelope analysis techniques are useful to reduce
the noise influences. Sometimes, when the signals are very
noisy, mainly caused by some kind of looseness, neither fil-
tering nor envelope analysis can do anything to improve the
quality of the processed signal. Fig. 5 illustrates this case.

Another problem happens when some of the harmonic
components unrelated to bearing conditions coincide in fre-
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Figure 4: Damaged bearing with many fundamental cage fre-
quency harmonics.
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Figure 5: Noisy envelope spectrum.

quency with the bearing vibration components creating ob-
stacles to identifying the type of defect. In the worst cases,
even the increase of resolution in the envelope spectrum
would not help to distinguish the different families of har-
monics. This is not only a challenge when conceiving an
automatic pattern recognition based classifier, but also anal-
most insurmountable obstacle to a human expert.

4. CLASSIFICATION METHODOLOGY

Since each considered example always presents at least one
kind of defect (not only bearing defect), the approach to deal
with this multilabel classification problem was to generatea
binary rolling bearing classifier in the following way: all ex-
amples without any bearing fault constitute the negative class
while the examples containing at least one kind of bearing
defect belong to the positive class. The training base was cre-
ated considering that each acquisition is formed by all signals
collected by each sensor placed on each bearing housing of
the motor pump. Since the machine normally has four bear-
ing housings and each one has a distinct rolling bearing, each
acquisition provided four examples to the training base. Ta-
ble 1 shows the proportion of positive and negative examples
where the positive class means the class of examples contain-
ing any rolling element bearing defect and the negative class
is the class of examples that have no bearing fault.

There are two important steps in the fault detection pro-
cess. The first is to perform signal processing to generate
the feature vector used in the subsequent classification step
and the second step consist of inducing a classifier. In this
work we extract features from some important bands of the

Table 1: Class distribution of the examples

Class A priori class
distribution

Negative (without bearing fault) 87.79%
Positive (with any bearing fault) 12.21%

envelope spectrum. We consider narrow bands around the
first, the second, the third, the fourth, and the fifth harmonic
of each characteristic frequency. Another useful information
used was the RMS (root mean square) calculated from the
spectrum of acceleration and from the envelope spectrum of
each measurement point.

Pattern recognition techniques [18], especiallyfeature se-
lection, is useful to reduce the number of features and to
avoid the presence of irrelevant information, facilitating the
subsequent classification. In this work we use theSequen-
tial Forward Selectionstrategy [18]. After all features have
been extracted and selected, the next step is the induction of
a classifier algorithm.

5. RESULTS

We will present some experimental results with real data
from rotating machines of oil rigs conducted. A statistically
significant amount of real examples were available. Each
considered acquisition present some kind of fault, for in-
stance misalignment, unbalance, flow turbulence, bearing,
and so on. Normal examples, that is, examples without any
defect were not used in this experiments. An examples is
called “normal” when the level of overall RMS is less than a
pre-set threshold. Doing a simple pre-processing, we could
distinguish a faulty example from an example in good con-
dition without training a classifier. (A high RMS value does
not necessarily mean a bearing failure.) With these experi-
ments we will be able to conclude if the envelope analysis
together with pattern recognition techniques really provide a
powerful method to determine if a bearing is defective or not.

An empirical comparison with various classifier models
[3,18], was made and the 10-fold “Cross Validation” method
was used to estimate the error rate. Table 2 shows the result
of the performance estimates experiences of various classi-
fiers: 5-Nearest-Neighbor (5-NN), Multi-Layer Perceptron
(MLP), and Support Vector Machine (SVM). For the SVM
classifier we used the radial basis as the kernel function, set
the cost parameter to 0.5, and set the gamma value to 8.

Table 2: Accuracy rate regarding only the selected features.

Classifier Accuracy
rate

5-Nearest-Neighbor 91.09%
Multi-Layer Perceptron 92.32%
Support Vector Machine 91.49%

An alternative way to compare the classifier’s perfor-
mance is shown in Fig. 6 which is an ROC graph [4] with
the three classifiers presented in Table 2. Each point repre-
senting one classifier. It is a technique for visualizing, or-
ganizing and selecting classifier based on their performance
in a two-dimensional space where the true positive rate (also
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called hit rate or recall) is plotted on theY axis and the false
positive rate is plotted on theX axis.
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Figure 6: The ROC graph showing three classifiers.

One classifier is supposed to be better than the other if it
is to the northwest of the first. Any classifier on the diagonal
is said to follow a random guessing strategy while a classi-
fier below the diagonal performs worse than random guess-
ing and may be said to have useful information, but applying
it in an incorrect way. The ROC analysis is very important to
compare classifiers considering unbalanced classes problem,
such as a machine fault diagnosis since the number of nega-
tive class examples is almost always greater than the positive
ones. Metrics such as accuracy are sensitive to changes in
class distribution.

6. CONCLUSION

In this work we employed signal processing and pattern
recognition techniques to classify faults in bearings. Theen-
velope analysis provides the feature vector used in the sub-
sequent classification steps. On the contrary to the majority
of the works that study the fault detection problem, we in-
vestigate the rolling element bearing fault diagnosis method
based on envelope analysis applied to real world data ob-
tained from several different oil platforms. Preliminary anal-
ysis were done and some common problems were exhibited.
The results has suggest that this method can satisfactorilybe
used on diagnosis process even in a real environment.

In the near future we will examine these real examples
more closely in order to improve the performance of the clas-
sifiers refining the adopted techniques. Moreover, more ro-
bust techniques than the traditional envelope analysis will be
used. Further investigations not only on rolling bearing fail-
ure but also on others faults, such as unbalance, misalign-
ment, flow turbulence, and cavitation will be reported soon.
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