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ABSTRACT 
In this paper a hierarchical classification of different levels 
of phonetic information is proposed in order to improve 
phone recognition. In this paradigm several intermediate 
classifiers give posterior probability predictions for broad 
phonetic classes, achieving phone detail in the last layer. 
Class membership probabilities are weighted and combined 
in order to get a more robust phoneme prediction. A method 
for finding the best set of weights is also proposed based on 
discriminative training in a hybrid MLP/HMM system. Ex-
periments show that the use of broad-class information en-
hances phone recognition. Relative improvements of 8% in 
Correctness and 5% in Accuracy were achieved in phoneme 
recognition on the TIMIT database compared to a baseline 
system. 

1. INTRODUCTION 

Speech sounds share acoustic, articulatory, phonological or 
other properties, with other speech sounds. Different types 
of speech features can be used to represent the speech signal 
and a speech recognition system can use different categories 
of speech features in order to introduce heterogeneous 
information into the existing Automatic Speech Recognition 
(ASR) system. According to the perspective adopted, the 
features can be phonological, [1],[2], broad phonetic groups, 
[3], attributes, [4], events, [5],[6], articulatory [7], etc. This 
additional information aims at correcting the errors made by 
an existing recognizer.  Usually this information is captured 
by independent systems (Artificial Neural Networks 
(ANNs) [1] – [3], Hidden Markov Models (HMMs) [4] or 
Support Vector Machines [4] ) and enters the system as  
additional features [1],[2],[4],[8].  
The combination of different levels of phonetic detail was 
already investigated in several works, e.g. [3], where the 
outputs of four broad phonetic group classifiers are  
combined in order to correct or enhance a phone classifier. 
In this paper a similar approach is carried out with a Multi 
Layer Perceptron (MLP), however, with an hierarchical 
structure, from broad to fine phonetic detail. The class  
predictions form earlier classifiers are fed to the next ones in 
order to enhance the class discrimination in the current 
classifier. This serial arrangement did not beat our one-
hidden layer, well-trained baseline system, with about the 
same number of training parameters. However, if we use the 

class membership predictions as priors to a final decision, 
then, a better phone classifier is achieved. We did this by 
weighting the broad-class predictions in several different 
ways. We demonstrate in this paper that the multi-output 
MLP combination approach can benefit from a trained 
weighted combination rule, where the weights are trained as 
a function of the accuracy of each phoneme in a hybrid 
MLP/HMM phoneme recognizer. 
This paper is organized as follows. In Section 2, the  
hierarchical MLP classifier is described. Section 3 outlines 
the proposed MLP combination approach, where each  
phoneme is predicted by scaling 4 broad-class outputs  
associated with each phoneme, with 4 weights, which may 
be different or equal for each phoneme. In Section 4 we  
discuss the performance of our proposal and present the 
experimental results. The paper ends with some concluding 
comments about the proposal. 

2. HIERARCHICAL MLP DESCRIPTION 

An MLP network was trained for both phoneme frame  
classification and broad-class frame classification. Speech is 
analyzed every 5ms with a 15ms Hamming window. Thirty-
nine parameters were used as standard input features 
representing 12 MFCC, plus energy, and its first and second 
derivatives. An additional set of temporal and spectral 
speech features (described in [9],[10]) were also used,  
resulting in 49 input features. Experiments have shown that 
this additional feature set has new information and actually 
contributes to the discrimination between classes. Two  
systems, one with the standard 39 input features and another 
with 49, with a similar number of parameters (about 124 k) 
were compared. Figure 1 shows the frame error rate (FER) 
with the two systems. In all training iterations the MLP with 
49 features got the lower frame error rate. FER is about 
1.3% (3% relative) lower than if we use only the standard 39 
MFCC features. 

The context window used is 85ms (equivalent to 17 
frames) but only 9 frame features were used, one every other. 
The unused frame features are used in the next window 
analysis. The current frame is in the centre of the context 
window (temporal information of past and future is 
 included). Figure 2 illustrates the procedure. The white 
squares represent the frames discarded and the grey ones are 
the ones considered. This enlargement of the temporal 
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information included in training performs better than the 
typical context window where the used context looks only to 
past frames. 
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Figure 1 – FER comparison of training results when using 39 or 49 

input features 

 

 
Figure 2 – Acoustic context window widening used. 

 
The softmax function was used as the activation function of 
the layers with outputs/targets, so that the output values can 
be interpreted as posterior probabilities. The other layers 
(hidden layers) use a sigmoid activation function. All the 
network weights and bias are adjusted using batch training 
with a resilient back-propagation (RP) algorithm [11] so as 
to minimize the minimum-cross-entropy error between  
network output and the target values. The choice of the error 
function followed Bishop’s suggestion [12], which was later 
clarified by Dunne [13]. It states that the softmax activation 
function should couple with the cross-entropy penalty  
function.  
The proposed system consists of 10 layers as depicted in 
Figure 3. The neural net has about 85k parameters and the 
number of nodes in the layers is (in numerical order):  
50-3-50-5-50-12-50-34-50-61). The network is trained as a 
function of both the 61 TIMIT [14] phonemes and 4  
additional sets of broad phonetic groups consisting of 3, 5, 
12 and 34 broad phonetic classes. Section 2.2 describes 
these sets. The last layer performs a 1-to-61 classification 
over the set of phonemes. All layers are trained concurrently 
so that in training mode targets were presented at all even 
layers: layer 2, 4, 6, 8 and 10. 
 
2.1 Speech Data 
 
Both training and testing were carried out using the TIMIT 
database[14], and its original 61 phoneme set. This database 
is commonly used in phone recognition benchmarking, e.g.  
[1][3][15]. The training set consisted of all si and sx  
sentences of the original training set (3698 utterances) and 

the test set consisted of all si and sx sentences from the 
complete 168-speaker test set (1344 utterances). The targets 
derive from the phoneme boundaries provided by the TIMIT 
database.  

 
 

 
Figure 3 – Neural net architecture for phoneme classification with a 
hierarchical set of broad-class phonetic classifiers. Targets are de-

fined for 5 output layers. Input features are presented to odd hidden 
layers. 

 
Although the neural network is tailored to discriminate the 
full 61 TIMIT phonemes, these symbols are sometimes  
considered a too narrow description for practical use, and for 
evaluation we collapsed the 61 TIMIT labels into the  
standard 39 phonemes as proposed by Lee and Hon [16]. 
 
2.2 Broad-Classes Description 
 
As stated above, the proposed MLP system is trained as a 
function of the 61 phones and 4 additional sets of broad 
phonetic classes, consisting of 3, 5, 12 and 34 TIMIT phone 
sets. The first group classifies the signal into 3 classes: 
voiced, unvoiced and silence, according to the division  
proposed by [17]. The other sets were grouped according to 
the division presented in Table 1.  
All the broad classes show strong agreement within some 
phonetic, articulatory and/or acoustic properties, each of 
which provides different information about the speech  
signal. For example, the consonant [n] shares nasality with 
[m], as well as complete oral closure within the set [ptk], 
etc. These common properties allow us to group the  
phonemes into broad classes, which not only describe a set 
of specific properties but also contrast with the remaining 
classes. The network has been trained and applied to a  
hybrid MLP/HMM system. The phone recognition results 
obtained using only the phone posteriors were 67.0% for 
Correctness and 65.6% for Accuracy, about 1% less than our 
baseline system, as indicated in Table 2. The baseline system 
has only one hidden layer, the same input layer as in Figure 
2 and about the same number of weights. A possible  
explanation for this result is the concurrent training and a 
non-optimal class subdivision. 
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5 Classes 12 Classes 34 Classes TIMIT Phonemes 

v1 iy  
v2 uh uw ux 
v3 ax ax-h ah 
v4 ix ih 
v5 aa ao 
v6 eh  

Vowel 

v7 ae 
d1 ey  
d2 aw  
d3 ay  
d4 oy  

Dipthongs 

d5 ow 
sv1 r w y  
sv2 l el 

Vowel 

Semi-vowel 
sv3 er axr 

Stop-V stV b d g  
Stop-uV stuV p t k Stop 
Affricate afr jh ch 

fV1 z  
fV2 zh Fricative-V 
fV3 v dh 
fuV1 s  
fuV2 sh Fricative-uV 
fuV3 f th 

Fricative 

Whisper w hh hv 
n1 en n nx 
n2 m em Nasal Nasal 
n3 ng eng 
sil1 h#  

Silence 
sil2 pau epi 
vcl bcl dcl gcl  
uvcl pcl tcl kcl 
cl1 dx 

Silence  
Closures 

cl2 q 

Table 1 – Broad-Classes description. 
 

3. HIERARCHICAL MLP COMBINATION 
APPROACH 

The goal of the proposed combination approach is to take 
advantage of the broad-class posteriors along with the phone 
posteriors, in order to condition and improve the global  
phoneme recognition performance. Two approaches were 
tested. In both approaches the outputs of layer 2 were not 
used. One approach considers that each phone is predicted 
by combining 4 broad-class outputs associated with each 
phone, with weights different for each phone. These weights 
are found by means of a discriminative training method. In 
the other approach the broad-class posteriors are scaled by 
fixed weights, equal for all phones. 

3.1 Discriminative Weight Training 
 
In this approach, a weight will be assigned to the logarithm 
of each network output and to each phoneme. The global 
phoneme posteriors are found by combining the  
corresponding outputs of layers 4, 6, 8 and 10. The proposed 
combination rule is expressed in equation (1), 

 ( ) ( ) ( )

1

1ˆ | exp log( )
L

k k

N
l l

k c
l

P p y
Z

α
=

⎛
= ⎜ ⎟

⎝ ⎠
∑x c

⎞ . (1) 

( )ˆ |kP p x  is the phone probability prediction, given the  
observation vector x and broad-class predictions,  { }1,..,61k∈ , where k is the phoneme index and NL = 4 is 
number of taken layers in the weighting (layers 4, 6, 8 and 
10).  and ( )

k

l
cy ( )

k

l
cα  are the network output and corresponding 

weight of layer l and index ck, denoting the broad-class  
index to which the phoneme k belongs. Each phoneme is 
predicted weighting the 4 class outputs associated with the 
phoneme k, which are different for each phoneme. For  
example, for the phone [v], the 4 weights are applied to the 
outputs of phone v, class “fV3”, voiced fricative class and 
fricative class. In equation (1) Z is a softmax normalization 
factor in order to the predictor ( )ˆ |kP p x  for the 61  
phonemes sum up to one. 
We tested also a common set of 4 weights for all phonemes. 
If all weights are 1, this corresponds to the product of the 4 
outputs and gives a better result than using only the  
phoneme layer outputs (weights {0, 0, 0, 1}). 
 
3.1.1 Cost Function 

 
The best set of weights is the one which gives the highest 
phoneme accuracy according to our hybrid MLP/HMM  
recognition system. Consequently, an iterative training 
method based on the paradigm of discriminative training is 
appropriate. Every kind of error should be considered:  
substitutions, insertions and deletions. Since these errors are 
found by the Levenshtein distance, the objective function 
should include a minimization of this function. However, we 
used a simple 1-best discriminative function, thereby  
avoiding the error counting, but is better than applying the 
phone targets to the network output layer as is usually done. 
The Levenshtein distance aligns two label sequences. One is 
the correct sequence, , and the other is the best decoding 
hypothesis given by the recognizer, . Using the Viterbi 
algorithm, we define an error function as: 

labW

recW

 

 ( ), ( ) (rec lab rec labd W W g W g W= − )

) )

 (2) 

 
where  and  represent the reference and best 
acoustic likelihood of the observation sequence according to 
the Viterbi algorithm. This difference is always greater than 

( labg W ( recg W
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zero, and is only zero if the two transcriptions are exactly the 
same (labels and time alignments). 
If NBD is the total number of training utterances, the global 
cost is then given by: 

  (3) ( ) ( )

1
( ,

BDN
n n

rec lab
n

E d W W
=

= ∑ )

In the hybrid MLP/HMM approach the a priori probability 
function bs(x) is the likelihood of observing x in the HMM 
state s, is transformed in the posterior probability predicted 
by equation (1).  
In order to find the appropriate set of weights ( ( )l

kα ) a  
gradient descendent method is applied. In this case, it can be 
shown that the error gradient has terms of the form: 

 ( ) (( )
( )

ˆlog | log( ) 1 1/l
k kl

k

)P p y
α
∂

= −
∂

x Z

k
⎞
⎟

 (4) 

We used the resilient back propagation algorithm in order to 
accelerate the convergence to a solution. 
 
3.2 Simple Weighting 

 
We also tested a simple weighting model that corresponds to 
use only 4 weights, common to all phonemes. The phoneme 
probability prediction is given by 

  (5) ( ) ( )

1

ˆ | exp log( )
LN

l
k l

l
P p yα

=

⎛
= ⎜

⎝ ⎠
∑x

In this case the fastest way to get a solution is to test the  
system with a grid of weight values. Surprisingly, this simple 
method turns out to be as good as or even better than a set of 
weights per phoneme.  Results for both methods are given in 
the next section. 

4. EXPERIMENTAL RESULTS 

Experiments on phoneme recognition were carried out using 
a hybrid MLP/HMM system, where a priori state likelihoods 
are replaced by posterior probabilities, according to equation 
(1). The HMM models were built for all phonemes by using 
HTK 3.4 [18] with some changes in order to replace the 
usual Gaussian mixture models by the outputs of the MLP. 
Each phoneme was modelled by a three-state left-to-right 
HMM and each state shares the same MLP output. The  
performance of the hybrid system was evaluated by means of 
Correctness (Corr) and Accuracy (Acc) using the HTK 
evaluation tool HResults.  
Results are presented in Table 2. The first line shows the 
baseline system which corresponds to a network with a  
single hidden layer. The second line shows the results if only 
the last layer outputs, representing phones, is used. The third 
line corresponds to the product of the broad-class and  
phoneme posteriors, which can be seen as a joint probability 
of the classes. The simple inclusion of the broad-class  
predictions leads to a relative improvement of 9.6% in  
Correctness and 4.1% in Accuracy. This shows the  

importance of combining broad-class posteriors with the 
phoneme posteriors for enhanced phoneme recognition. The 
fourth line represents the result achieved with empirical fixed 
weights. The weights show that different importance should 
be given to the different layers. This is in agreement with the 
results presented in the fifth line, for which the weights were 
obtained with a broad-class confidence measure of the  
predictions. The confidence measure is computed based on 
the difference between the best and second best class  
prediction values. The weights reflect the mean values of this 
confidence measure across all frames. 
 

Weights % Improve-
ment 

Layer 
4 

Layer 
6 

Layer 
8 

Layer 
10 

% 
Corr 

% 
Acc Corr Acc 

baseline 68.3 66.7   

0 0 0 1 67.0 65.6 - - 

1 1 1 1 73.5 68.3 9.6 4.1 

0.6 0.6 0.4 1 72.2 68.9 7.7 5.2 

0.82 0.59 0.48 1 72.4 68.9 8.1 5.1 

Discriminative training 72.4 68.9 8.1 5.1 

 
Table 2 – Phone recognition results. 

 
The last line shows the results with the discriminative  
training of the weights, ( )

k

l
cα . We achieved a Correctness rate 

of 72.4% and an Accuracy rate of 68.9%. This is a relative 
improvement of 8.1% and 5.1% for Correctness and  
Accuracy, respectively. As required, the increment of the 
recognition rates was accomplished by an error decrement. 
As long as the weights are being updated, the Viterbi align-
ment converges to the reference alignment, which means that 
the discriminative function  approaches . ( recg W ) ( )labg W

 
4.1 Discussion 
 
The results are very close to those presented in [4] and [1], 
where the best phoneme accuracy achieved was 69.52% in 
the first and 70.10% in the second. Our results are not  
comparable with those presented in [3], because those  
authors evaluate their system by means of phoneme  
classification and not phoneme recognition, (which is a 
harder problem). Even though the presented results did not 
surpass the results presented in [1] and [4], this work shows 
that the use of an appropriate set of weights on the broad-
class posteriors along with the phone posteriors enhances 
phoneme recognition. Furthermore, the results presented here 
may not be fully optimized, as line 4 and 5 of Table 2 may 
suggest. The fact that the weights do not increase with the 
layer hierarchy may indicate that the proposed class division 
is not optimized for phoneme recognition. It seems that there 
is no real hierarchy among the classes, as has been supposed. 
Future work will tackle the question of refinement of the 
class division. 
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5. CONCLUSIONS 

This paper describes a hierarchical multi-layer perceptron 
architecture to improve phoneme recognition rate and the 
outcome of tests performed on it. It follows the idea that 
middle representations between the speech signal and the 
corresponding phonetic units may help phoneme recogni-
tion. Prior to recognizing phonemes, this hierarchical system 
recognizes several broad phonetic classes. The system is 
based on membership predictions in 4 layers, with 5, 12, 34 
and 61 outputs. The last one corresponds to the TIMIT pho-
nemes and the others to broad phonetic classes. The infor-
mation provided by the layers was combined, and relative 
improvements of 8% in correctness and 5% accuracy, were 
achieved, compared with a system with a single hidden 
layer. Results do show, therefore, that the use of a suitable 
set of weights on the broad-class posteriors, along with the 
phone posteriors, enhances phoneme recognition.  
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