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ABSTRACT
This paper presents a new robust method to estimate the
parameters of ARIMA models. This method makes use
of the minimum Hellinger distance estimator (MHDE) to-
gether with a robust filter cleaner able to reject a large frac-
tion of outliers, and a Gaussian maximum likelihood esti-
mation which handles missing values. The main advantages
of the procedure are its easiness, robustness, high efficiency
and practical execution. Its effectiveness is demonstrated on
Monte Carlo simulations and an example of the forecasting
of the French daily electricity consumptions.

Index Terms– Robustness, time series, Hellinger dis-
tance, ARIMA models, outliers, load forecasting.

1. INTRODUCTION
Accurate forecasts of electricity load in short term are neces-
sary for electric utilities. Short-term forecasting is important
to balance the electricity produced and consumed at any mo-
ment of the day. Short-term forecasting helps also to man-
age the production, the transmission, and the distribution of
electricity in a more efficient and secure way. Errors in elec-
tricity prediction have significant cost implications for elec-
tric companies. This work is initiated by RTE, the transmis-
sion operator that manages and operates the French electric
power transmission system, which is confronted to the pres-
ence of outliers in the French daily electric consumptions. In
our case, the outliers, termed also breaks, are atypical days
such as public holidays and exceptional events. RTE uses a
SARIMA model in its daily forecasting. The load time se-
ries is first corrected from the influence of the weather by
using a regression model where the exploratory variables are
the temperature and the nebulosity. Then a SARIMA model
is fitted to the residuals. The resulting adjusted series ex-
hibit a trend and several major cycles (daily, weekly,seasonal,
yearly, etc.). Obviously, due to the qualitative change ob-
served in the series during the breaks, it is of paramount im-
portance to treat them separately from the majority of the
data. It is very difficult and challenging to detect these out-
liers by experience or eye-balling. This approach, which is
widely used by electric companies, is not very efficient. This
is because of the fact that an observation is judged outlying
relative to some model. To improve the robustness of the pa-
rameter estimation and forecasting methods, we may resort
to a robust statistical estimation.

Robust estimation is important when estimating a sta-
tistical model. When the data contains deviant observa-
tions termed outliers, the classical statistical estimators of
a SARIMA model become unreliable. Thus order selec-
tion, parameter estimation, and forecasting can be affected
notably. In the robust statistics literature, several methods
were proposed mainly for iid data and for regression mod-
els. Some methods were proposed in the context of time
series such as the filtered–τ , filtered M–, generalized M–
and the so-called Residual Autocovariance (RA)–estimators

[1, 2]. In this paper, we propose a new robust procedure
based on the minimum Hellinger distance estimator. Our
method compares favorably to the other methods in terms
of simplicity and forecasting performance. When applied to
the actual French daily electric consumptions, it exhibits the
same performance as compared to the filtered-τ estimators.
The filtered-τ are efficient highly robust estimators proposed
in [1]. By highly robust, we intend that the estimator has
a high breakdown point. We analyze the robustness of our
method using a simple novel approach and the maximum bias
curve, which is computed numerically. The effectiveness of
our method is demonstrated on an example of the forecasting
of the French daily electricity consumptions. The paper is or-
ganized as follows. In Section 2, we present the method and
analyze its robustness. Section 3 presents the simulation re-
sults in the case of electricity load modeling and forecasting.
Finally, Section 4 concludes the paper.

2. MHDE-BASED FILTERING
Hellinger estimator belongs to the minimum distance estima-
tors. A minimum distance estimator minimizes the distance
between two density functions in a functional space. An esti-
mation process based on the Hellinger distance was first put
forth by Beran [3]. In general, the Hellinger estimator offers
the advantage of being as efficient as the maximum likeli-
hood under the real or the non-contaminated model and very
robust when the data observed deviates from the strict mod-
eling assumptions [4].

In this article, we introduce a practical method to esti-
mate a SARIMA model using the Hellinger distance. In the
case of the first order autoregressive model AR(1) given by

Yt = φYt−1 + εt , εt ∼ N(0,σ2
ε ),

we show how to estimate φ and σε using the Hellinger dis-
tance. Minimizing the Hellinger distance of the prediction
residuals (dH ) with respect to both φ and σ gives multiple
solutions and can not be used for estimating the parameters.
However, φ can be estimated by minimizing a robust effi-
cient MHDE estimator of scale of the prediction residuals.
Thus, we define the minimum-Hellinger-based estimator in
the case of an AR(1), as φ̂H which satisfies

φ̂H = argmin
φ

{
argmin

σ
(dH(σ ,φ))

}

In order to improve the breakdown point of the estimator and
prevent the propagation and the presence of large outliers in
the explanatory variables; we replace the prediction residu-
als by the robust prediction residuals. For an AR(1), robust
prediction residuals are defined by ri(φ) = Yi − φŶi−1|i−1.
Ŷi−1|i−1 is obtained using a robust filter cleaner [5].
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The proposed estimator is computed by the following
steps

- Step 1: Search for σ̂H that minimizes the Hellinger cost
function dH(σ ,φ) for a certain φ

2−2
∫ +∞

−∞

(
1

σ
√

2π
e
−z2

2σ2

) 1
2

fr(z)
1
2 dz,

fr(z) is the nonparametric kernel estimate of the probability
density function of the robust prediction residuals defined by

fr(z) =
1
nh

n

∑
i=1

K
(

z− ri(φ)
h

)
,

where n is the number of observations used, K is referred to
as the kernel and h is a positive number known as the band-
width [6]. The optimal choice of the bandwidth value and
the kernel type are widely studied in the nonparametric area
[6]. In this article, we propose to use a Gaussian kernel.

- Step 2: Choose the φ̂H that minimizes the σ̂H(r1, . . . ,rn)
= argmin

σ
(dH(σ ,φ)) estimated previously.

The algorithm proposed in this paper uses a simple grid
search for φ , which is tractable since the interval of search is
]-1,1[. More sophisticated optimization algorithms were de-
veloped for the MHDE estimator [7]. To estimate an AR(p)
with p ≥ 1, the MHDE based estimator can be combined
with a Durbin-Levinson algorithm to give a robust-efficient
Durbin-Levinson algorithm. This algorithm is given by

• φ̂m,i = φ̂m−1,i− φ̂m,mφ̂m−1,m−i, i = 1, . . . ,m−1
• φ̂m,m = argmin

φm,m
σ̂m

H (rm+1,m, . . . ,rn,m)

• ri,m = Yi− Ŷ (m)
i|i−1

rm+1,m, . . . ,rn,m are the robust residuals of the mth step and
obtained by the robust filter cleaner [5]. The MHDE al-
gorithm applied previously to estimate the φ in the case of
an AR(1) will be used to estimate the partial autocorrelation
function φm,m in each step of the Durbin-Levinson algorithm.
This means that for a certain φm,m in ]-1,1[, calculate σ̂m

H and
choose the φ̂m,m that minimizes σ̂m

H . This approach allows to
estimate an autoregressive model of order p, AR(p).

To estimate the parameters of an ARMA(p,q) model, we
propose the following procedure
• Fit a high order AR(p∗) using the MHDE based estima-

tor, where p∗ is selected by a robust order selection crite-
rion subject to being larger than the order of the autore-
gressive part p.

• Detect the outliers by filtering with the high order
AR(p∗), reject them and use a classical maximum like-
lihood based estimation method of ARMA models with
missing values [8].

The robust filtering is based on the state representation of
an AR(p∗). The filter used is defined in [1] and based on
the robust filter of Masreliez [5], which is termed the filter
cleaner.

This filter adapts the outliers with their expected values
from the other observations and the structure of the model.
While at this stage, we can apply a maximum-likelihood es-
timator on the ’cleaned’ series, we prefer to delete the out-
liers and apply a classical estimator with missing values [8].
An AR(p∗) of high order is described by the following state

space representation

{
Xt = ΦXt−1 +Dεt
yt = GXt

, Φ =




φ1
...

Ip∗−1

φp∗ 0′p∗−1


 (1)

Here, Φ is the transition matrix, D = (1,0, . . . ,0)′, G =
(1,0, . . . ,0), Ik is the k× k identity matrix and 0k the zero
vector in Rk; dim(Φ)=k× k.

2.1 Robustness analysis of the MHDE based estimator
We propose in this section a simple novel approach to un-
derstand the robustness and the efficiency of the MHDE in
general and in the case of an AR(1). Beran[3] put forth an
informal proof of the efficiency and robustness of the MHDE
in the location case. The theoretical robustness and efficiency
was studied by Lindsay[4]. Tamura and Boos[9] studied the
case of multivariate location and covariance estimates. In this
section, we compare the MHDE solution to an equivalent M-
estimator solution. The Hellinger in this approach is found
to be equivalent to several redescending M-estimators that
tends to the maximum likelihood estimator when the fraction
of contamination ε tends to 0.

2.1.1 M-estimator equivalent to minimum Hellinger dis-
tance estimator in the location case

Z1, . . . ,Zn are independent contaminated Gaussian observa-
tions. We consider an infinitesimal contamination. The con-
taminated model is g = (1−ε)N(µ,1)+εδµ+m; δµ+m is the
point-mass at µ +m. The contaminated distribution function
is G(z) = (1− ε)Φµ(z)+ ε∆µ+m(z), where Φµ is the distri-
bution function of the normal distribution with mean µ and
variance 1 denoted by N(µ ,1). An M-estimator µ̂M is solu-
tion of the equation ∑n

i=1 ψ(zi − µ̂M) = 0. Asymptotically,
µ̂M

as−→ µM, with Eg(Z− µM) =
∫ ∞
−∞ ψ(z− µM)g(z)dz = 0.

On the other hand, the asymptotic Hellinger estimator satis-
fies ∫ ∞

−∞

(z−µH)

(2π)
1
4

e−
(z−µH )2

4
√

g(z)dz = 0 (2)

Equation (2) is obtained by deriving dH with respect to µH ;
dH is the Hellinger distance between g and N(µH ,1). The
M-estimator which is equivalent to the previous Hellinger es-
timator is given by

ψ(z−µ)g(z) =
(z−µ)

(2π)
1
4

√
g(z)e−

(z−µ)2
4 (3)

The MHDE is a very robust estimator. In the presence of a
very small fraction of contamination ε and d(z) given previ-
ously, we obtain:

ψ(z−µ)=
(z−µ)

(2π)
1
4

e−
(z−µ)2

4√
(1− ε)e−

(z−µ)2
2 + εδ (z−µ−m)

(4)

If we consider r as a residual then

ψ(r) = (2π)−
1
4


r

e−
r2
4√

(1− ε)e−
r2
2 + εδ (r−m)


 (5)
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Figure 1:

We want to analyze the impact of the outlier r = m, the
weight ψ(m) is given by:

ψ(m) = (2π)−
1
4


 me−

m2
4√

(1− ε)e−
m2
2 + ε


 (6)

From the Fig. 1(a), we remark that large additive outliers
receive a 0 weight and thus do not influence the estimation
which is then robust. When ε = 0, the ψ-function is the linear
curve ψ(m) = m which is equivalent to the sample mean or
the maximum likelihood estimator. For ε > 0, ψ(m) is a
redescending function. The MHDE adapts the ψ to the data.

2.1.2 M-estimator equivalent to minimum Hellinger dis-
tance estimator in the dispersion case
Z1, . . . ,Zn are independent contaminated Gaussian observa-
tions. The contaminated model g = (1− ε)N(0,σ) + εδm.
We want to estimate the parameter σ . The Hellinger dis-
tance between the contaminated distribution function g and
the Gaussian distribution function of N(0,β ) is given by

HD(g,N(0,β )) = 2− 2

(2π)
1
4

∫ ∞

−∞

√
g(z)β−

1
2 e
− z2

4β2 dz

Deriving the Hellinger distance with respect to β and replac-
ing by β = σH , we obtain

1

(2π)
1
4

∫ ∞

−∞
σ−

3
2

H

√
g(z)e

− z2

4σ2
H

(
−1+

z2

σ2
H

)
dz = 0.

An M-estimate of scale satisfies asymptotically [1]

Eg

[
ρ

(
z

σM

)
−δ

]
=

∫ ∞

−∞

[
ρ

(
z

σM

)
−δ

]
g(z)dz

= 0

The ψ-function of an M-estimate of scale is given by
Ψ(z,σ) = ρ(z/σ)−δ . By comparing the M-estimator equa-
tion to the Hellinger equation, we obtain for z = m

Ψ(m,σ) =
σ− 3

2 e−
m2

4σ2
(
−1+ m2

σ2

)

(2π)
1
4

√
(1− ε)e−

m2
2σ2 + ε

Fig. 1(b) shows that the MHDE based estimator is equiva-
lent to a robust scale M-estimator. If ε tends to 0 then the
equivalent M-estimator tends to ψ(z) = z2. The MHDE es-
timator is equivalent to the classical standard deviation for
ε = 0. This shows that the Hellinger is equivalent to sev-
eral redescending M-estimators where their weight function
depends on ε . When ε = 0, the Hellinger estimator is equiva-
lent to the maximum likelihood estimator. This computation
shows the robustness and the high efficiency of this estima-
tor in presence and absence of contamination respectively.
Since the estimated scale of the residuals is robust and effi-
cient, we conclude that the proposed filtered-MHDE-based
estimator defined previously is robust. This estimator can be
considered as a filtered S-estimator as defined by [1].
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Figure 2:

2.1.3 Maximum bias curves in the case of AR(1)
The maximum bias curves of the filtered-MHDE-based es-
timator are calculated following the Monte Carlo procedure
described in [1, page 305]. For AR(1), Fig. 2(a) depicts the
maximum bias curve of our MHDE together with that of an-
other robust estimator, namely the median of slopes estima-
tor, which has bias-optimality properties [1, Chapter 5]. The
filtered-MHDE exhibits almost similar maximum bias be-
havior as the median of slopes. It is observed from these plots
that the filtered-MHDE-based estimator is robust and has a
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breakdown point superior to 25%. The median of slopes has
a breakdown point of 25 %, that is, it can handle up to 25%
of outliers among the data samples. Simulation results seem
to exhibit a constant breakdown point regardless of the order
of the AR model for the filtered-MHDE. This result is inter-
esting since the percentage of outliers in load time series is
around 10 to 20 %. The efficiency of the proposed estima-
tor can be verified empirically for a certain AR(1). We do
this by calculating the variance of our estimator for increas-
ing sample size n. The efficiency is calculated using Monte
Carlo replications of the sample. Fig. 2(b) shows that for
φ = 0.5, the efficiency of the filtered-MHDE-based estima-
tor tends asymptotically toward unity with increasing n.

3. APPLICATION TO LOAD TIME SERIES
FORECASTING

SARIMA models are widely used to forecast electricity con-
sumption time series [10, 11]. Fig. 3 illustrates the load de-
mand from Saturday July 2nd , 2005 to Saturday July 23rd ,
2005. We notice that there is a break appearing on July 14th

and lasts until July 17th, 2005 (approximately from observa-
tion 600 to 800 on figure (3). July 14th is a public holiday in
France. These breaks or outliers give rise to problems with
online forecasting systems.
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Figure 3: Half-hourly electricity consumption on July 2-
23,2005, France.

3.1 Estimation and post-sample forecasting results
A seasonal ARIMA model, SARIMA(p,d,q)×(p1,d1,q1)s1
follow the equation

φp(B)Φp1(B
s1)∇d∇d1

s1
Yt = θq(B)Θq1(B

s1)εt ,

where Yt is the electricity demand at time t, s1 is the num-
ber of periods in the different seasonal cycles. B is the lag
operator. ∇ is the difference operator, ∇s1 is the seasonal
difference operator (BlYt = Yt−l ,∇ = 1−B,∇s1 = 1−Bs1).
φp, Φp1 , θq, Θq1 are polynomials of order p, p1,q,q1. εt

is a Gaussian white noise from N(0,σ2
ε ). On the daily se-

ries of a certain time (12:00), s1 is equal to 7 to model the
within-week seasonal cycle. In Fig. 4, we show the quan-
tiles of the absolute values of the residuals of two estimates.
Namely, the proposed filtered-MHDE-based estimate and the
classical approach based on maximum likelihood estimation
applied after smoothing the unusual observations by exper-
tise, denoted by CML, in the French daily load forecasting.
It is seen that the MHDE based estimate yields the small-
est quantiles, and hence gives the best fit to the bulk of data
(80 %). In Fig. 5, we show the evolution of their mean ab-
solute percentage error MAPE= 100

h ∑h
t=1

∣∣∣Yt−Ŷt
Yt

∣∣∣, where h is
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Figure 4: Quantiles of absolute residuals of estimates for
load series at 12:00

the length of prediction. The estimation is done on a six-
months period and the forecasting is computed on a period
of one hundred (100) days. Only ”normal” days are taken in
account for the MAPE evaluation, which is natural since the
goal of the method is to forecast ”normal” days with better
precision. The filtered-MHDE-based estimator has smaller
MAPE than the CML for all leading times as illustrated in
Fig. 5 . This means that our method improves the forecast-
ing quality for the majority of data. In Fig. 6, the MAPE is
calculated for the SARIMA estimation method based on the
filtered-τ estimates and the previously defined approach. The
filtered-τ estimates are highly efficient with high breakdown
point of 50 %. The mean absolute percentage error of our
robust approach and the filtered-τ are denoted by MAPEH
and MAPEτ respectively. At 12:00, we remark that for all
leading times MAPEH < MAPEτ . This means that the fore-
casting quality is improved with the new approach for this
hour of the day. At 20:00 MAPEτ < MAPEH for small fore-
casting times and they are almost the same for large leading
times. In this example, the MHDE is slightly superior to
the τ-estimates for the majority of day hours. The proposed
method is much simpler in execution and algorithm than the
filtered τ-estimates.

4. CONCLUSION
In this paper, a new robust filtered-MHDE estimation method
for SARIMA models is proposed. Its maximum bias curve is
derived and its robustness discussed. We compare the perfor-
mance of our MHDE method to that of the classical approach
based on maximum likelihood estimation after smoothing the
outliers by experts in the French daily load forecasting series.
It is found that our MHDE method outperforms the current
methods. We compare also the proposed method with the
highly robust efficient estimators known by filtered-τ esti-
mates [1]. Our method shows equivalent forecasting perfor-
mance while being simpler and less complicated. Sophisti-
cated robust methods are useful tools for automatic online
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Figure 5: MAPE forecast accuracy versus lead time for the
series at 10:00.
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Figure 6: MAPE forecast accuracy versus lead time for the
series at 12:00, 20:00

estimation and forecasting load series. They constitute also
better alternatives to the intervention analysis based on expe-
rience used by the electric companies. These methods can of-
fer a good tradeoff between robustness and efficiency. Ongo-
ing effort has been concentrating on improving the execution
algorithm to reduce the online calculating time. Hence, hy-
brid algorithms which combine natural gradient descent with
Newton’s method can be investigated [7]. Another research
work will be to derive a robust order selection criterion in
the same spirit as the Akaike’s information criterion (AIC)
proposed by Akaike [12] but using the Hellinger disrepancy
instead of the Kullback discrepancy[13].
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