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ABSTRACT
This paper presents an algorithm for parametric supervised
colour texture segmentation using a novel image observa-
tion model. The proposed segmentation algorithm consists
of two phases: In the first phase, we estimate an initial class
label field of the image based on a 2D multichannel complex
linear prediction model. Information of both luminance and
chrominance spatial variation feature cues are used to charac-
terize colour textures. Complex multichannel version of 2D
Quarter Plane Autoregressive model is used to model these
spatial variations of colour texture images in CIE L*a*b*
colour space. Overall colour distribution of the image is es-
timated from the multichannel prediction error sequence of
this Autoregressive model. Another significant contribution
of this paper is the modelling of this multichannel error se-
quence using Multivariate Gaussian Mixture Model instead
of a single Gaussian probability. Gaussian parameters are
calculated through Expectation Maximization on a training
dataset. In second phase of the algorithm, initial class label
field obtained through the first stage is spatially regularized
by ICM algorithm to have the final segmented image. Visual
and quantitative results for different number of components
of Multivariate Gaussian Mixture Model are presented and
discussed.

1. INTRODUCTION

The main goal of image segmentation is to partition the input
image into different regions. Colour texture segmentation is
useful in many real world applications. It gives the possi-
bility to identify the regions of interest in scenes for subse-
quent image analysis. Various model based approaches for
texture segmentation in grey level and colour images have
been proposed in the recent years [7], [6], [9], [10]. There
are many real world applications which demand for higher
precision of segmentation along with stability under differ-
ent constraints. Such applications normally use supervised
segmentation methods.

An example of supervised colour texture segmentation
based on the minimal cut/maximal flow algorithm in the rep-
resentation graph of the image is presented in [8]. They in-
corporated the colour and texture feature cues into the whole
graph used for segmentation. There exist a number of model
based approaches for colour texture segmentation. A Markov
Random Field (MRF) based image segmentation model has
been proposed in [6]. The authors represented the differ-
ent classes in the image by Multivariate Gaussian Mixture
Model (MGMM). They used Gabor filters as texture features

whereas pixel values in CIE L*u*v* colour space are consid-
ered as colour feature cue. In [10], the authors used Gaussian
Mixture Models (GMM) for autoregressive model features
to classify colour textures. They have used several methods
to represent the structure information of the colour images
including wavelet coefficients, DCT coefficients and autore-
gressive model coefficients. Authors achieved colour texture
classification by fusing this structure information with the
pure colour information obtained through the mean and co-
variance information of the image. In both these approaches,
the authors have not considered the fusion of chrominance
structure information with luminance structure information
as they did not take into account the chrominance structure
information.

In this paper, we present a model based parametric al-
gorithm for supervised colour texture segmentation through
2D multichannel complex random fields in the CIE L*a*b*
colour space. We have not considered the other perceptual
colour spaces because comparison of different colour spaces
is beyond the scope of this paper due to the limited space. In
the first phase of the algorithm, Two-Dimensional (2D) mul-
tichannel complex version of Quarter Plane Autoregressive
(QP AR) model is used to model the luminance and chromi-
nance spatial variations of the multichannel complex image.
Normal hypothesis for the multichannel prediction error se-
quence of this linear prediction model is that it can be mod-
elled through a single Gaussian. This multichannel error se-
quence gives an approximation to the pure colour content
of the image. Therefore, we modelled the same error se-
quence through Multivariate GMM (MGMM) to have a sta-
ble segmentation result. Parameters of MGMM are estimated
through the Expectation Maximization (EM) algorithm. In
the second phase of the algorithm, we use Potts model with
an Iterative Conditional Mode (ICM) [3] to regularize the ini-
tial colour texture segmentation computed in the first phase.

Section 2 describes the colour space and image represen-
tation used. Image observation model, which is a 2D mul-
tichannel complex linear prediction model, is described in
Section 3. MGMM based prediction error model and esti-
mation of MGMM parameters through EM are explained in
Section 4. Simulations and results are presented in Section 5
and finally Section 6 concludes the paper.

2. IMAGE REPRESENTATION

The RGB colour space is usually used for image process-
ing and/or analyzing. However the representation of RGB
components in a 3D polar coordinate system often reveals
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characteristics which are not visible in the rectangular repre-
sentation. Our approach is fundamentally based on the mod-
elling of spatial structure information of both luminance and
chrominance channels of the image. As in RGB colour space
it is very difficult to decorrelate and analyze the effects of lu-
minance and chrominance channels separately, therefore we
propose to use the polar CIE L*a*b* colour space. Other
perceptual colour spaces like CIE L*u*v* or Improved Hue,
Luminance and Saturation (IHLS) like in [4], may also be
used.

2.1 CIE L*a*b* Colour Space

CIE L*a*b* is a uniform colour space based on human per-
ceptual system defined by CIE in [1]. The transformation
from the RGB colour space to the L*a*b* colour space is
performed by the following equations:
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) 1
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116 for µ ≤ 0.008856

(1)

where XW , YW and ZW are the CIE XYZ tristimulus values of
the reference white point [1]. As we did not have the knowl-
edge of the reference white points of the test images used
in simulation section (cf. Section 5), we took the reference
white point obtained when R = 1, G = 1 and B = 1.

2.2 Two Channel Complex Image

We use the colour information obtained through RGB to
L*a*b* transformation to build a two channel image that
contains pure luminance values in one channel and complex
chrominance values in the other channel. We define this
chrominance value as a complex function depending upon
two chrominance variables i.e. a* and b* in case of L*a*b*.
This exponential being independent of the luminance values
shall give us the pure information about the colour variations
in the spatial domain. We define the combined chrominance
for CIE L*a*b* as:

C = a∗+ j×b∗ (2)

where a∗ and b∗ are two chroma variables obtained from
RGB to L*a*b* transformation. We obtain a complex repre-
sentation of chrominance content of the image whose spec-
trum is interesting to analyze from a colorimetric point of
view. Now the image to be analyzed consists of two 2D
channels in which first channel contains the luminance in-
formation and second is complex valued channel containing
combined chrominance information and is expressed as:

xn =
[

l∗n
cn

]
(3)

where n = (n1,n2) ∈ Λ ⊂ Z2 in which Λ is the finite 2-D
image lattice region of size |Λ|, l∗n ∈ R and cn ∈ C.

Figure 1: Two dimensional Quarter Plane Autoregressive model
neighbour support region of order (M1,M2), where M1 = 2 and
M2 = 2 for first quarter plane.

3. IMAGE OBSERVATION MODEL

In this section we present the 2D multichannel complex lin-
ear prediction model which is used to model the observed
colour image.

3.1 Linear Prediction Model
A 2D multichannel random centered process represented by
a vector sequence X = {Xn}n∈Z2 with dimension P repre-
senting the number of channels following a linear prediction
model can be defined through the prediction sequence:

X̂n =− ∑
m∈ D

AmXn−m (4)

as
Xn = X̂n +En. (5)

where m = (m1,m2) ∈ D ⊂ Z∗2 is a point inside neighbour
support region defined by D. Am, m∈D, are P×P coefficient
matrices and E = {En}n∈Z2 is the prediction error sequence
which is supposed to be a multichannel stationary process.
We used 2D multichannel complex version of QP AR model
as the image observation model. Details of QP AR are given
in following subsection, while the details of other linear pre-
diction models can be found in [11].

3.2 2D QP AR Model
2D multichannel complex QP AR model is defined by Equa-
tions 4 and 5 for which the causal QP1 neighbourhood sup-
port region is defined as follows:

DQP1
M1,M2

= {(m1,m2)/0≤ m1 ≤M1,

0≤ m2 ≤M2,(m1,m2) 6= (0,0)}
(6)
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where (M1,M2) ∈ N2 is the model order. In case of 2D mul-
tichannel complex QP AR model, Am, m∈D, are P×P com-
plex coefficient matrices. These 2D complex QP1 AR param-
eters are estimated by a matrix solution of a system of normal
equations. An example of such a neighbourhood support re-
gion for 2D QP1 AR model is shown in Figure 1.

A common hypothesis about the multichannel stationary
error sequence E = {En}n∈Z2 in Equation 5 follows a Gaus-
sian distribution [2]. Thus it can be characterized by a single
Gaussian probability distribution with a zero mean value and
having a P×P covariance matrix denoted by Σe.

4. PREDICTION ERROR MODEL

In this paper we assume that the multichannel linear predic-
tion error sequence E can be modelled through a mixture of
Gaussians. Details of MGMM and its parameter estimation
using EM algorithm is explained in the next subsections.

4.1 Multivariate Gaussian Mixture Model
Gaussian mixture model for the multichannel error sequence
E is defined as:

p(en|θ) =
K

∑
k=1

αk p(en|θk) (7)

where α1, . . . ,αK are the prior probabilities of each Gaussian
component of the mixture, and K > 1 is the number of com-
ponents of MGMM. Each θk is the set of model parameters
defining the kth component of the mixture model. The prior
probability values must satisfy following conditions:

αk > 0,k = 1, . . . ,K (8)

and
K

∑
k=1

αk = 1 (9)

For the 2D complex error sequence E, MGMM can be con-
ceived by considering the real and imaginary parts of the
complex error sequence as two variates of the mixture model.
For MGMM, each component density p(en|θk) is a normal
probability distribution with P = 3 in our case:

p(en|θk) = (2π)−p/2√
det(Σk,e)

exp
[
− (en−µk,e)

T (Σk,e)
−1(en−µk,e)

2

]
(10)

where µk,e is the mean and Σk,e is the covariance matrix of
kth component of the mixture. Thus the complete set of
MGMM parameters is Θ = {θ1, . . . ,θK ,α1, . . . ,αK} where
θk =

{
µk,e,Σk,e

}
, k = 1, . . . ,K.

4.2 Expectation Maximization
The most widely used approach for the estimation of the
MGMM parameter set Θ, from a given dataset is to use Max-
imum Likelihood Estimation (MLE):

Θ̂ = argmax
Θ

p(e|θ) (11)

where f (θ) = p(e|θ) is the likelihood function. The EM
algorithm is a general iterative technique for computing MLE
when observed data can be considered as incomplete. The

Training colour texture

?

?

Prediction model estimation,
{

µ̂, Âm,m ∈ D
}

?

Prediction error calculation,
e = {en}n∈Λ

?

MGMM parameters, Θ̂ estimation through EM

Complete estimated model,
{

µ̂, Âm,m ∈ D,Θ̂
}

Figure 2: Block Diagram of the model parameter estimation for
each texture class in the colour image.

algorithm consists of two steps: An E-step and an M-step.
The EM algorithm produces a sequence of estimates Θ(t),
t = 0,1,2, . . . by repeating these two steps. If Θ(t) denotes
the estimated MGMM parameter set at iteration t, then at
iteration (t +1) the E-step computes the expected complete
data log-likelihood function:

Q
(

Θ,Θ(t)
)

= ∑
n∈Λ

K

∑
k=1
{logαk p(en|θk)}P

(
k|en;Θ

(t)
)

(12)

where P
(

k|en;Θ(t)
)

is the a posteriori probability and is
computed as:

P
(

k|en;Θ
(t)
)

=
αk

(t) p
(

en|θk
(t)
)

K

∑
l=1

αl
(t) p
(

en|θl
(t)
) (13)

The M-step finds the estimate of Θ at iteration (t +1), by
maximizing the hidden variable Q

(
Θ,Θ(t)

)
:

αk
(t+1) =

1
|Λ| ∑n∈Λ

P
(

k|en;Θ
(t)
)

(14)
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∑
n∈Λ

enP
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(a) Colour textured image 1 (b) Colour textured image 2

(c) Colour textured image 3 (d) Colour textured image 4

Figure 3: Test colour textured images.

EM algorithm is strongly dependent on initialization of
parameter values. One way is to start with a number of ran-
dom starts and then assigning the final value which gives
the maximum-likelihood. This will increase the computa-
tion time, as evident. In our approach we have used well
known K-means algorithm to compute the initial values of
MGMM parameter set Θ. Figure 2 shows the block diagram
of model parameter estimation proposed in our segmentation
algorithm. Finally, a coarse class label set for colour texture
segmentation by the first phase of our approach is assigned
according to a global criterion which maximizes the sum of
the probability of all the mixture components, and is written
mathematically as:

l̂n = argmax
c=1,...,C

(
p
(
en|Θ̂c

))
(17)

where C is the total number of classes in the test colour im-
age and parameter set used in Equation 17 are the ones we
estimated at the end of EM algorithm. In the second phase
we use Potts model for spatial regularization of this estimated
class label field [2].

5. SIMULATIONS AND RESULTS

The ground truth data associated with complex natural im-
ages is difficult to estimate and its extraction is highly in-
fluenced by the subjectivity of the human operator. Thus,
the evaluation of proposed texture segmentation algorithm
was performed on natural as well as synthetic colour textures
which possess unambiguous ground truth data. Test images
were taken from the colour texture database used in [5]. The
database was constructed using colour textures from Vistex
and Photoshop databases.

In the first phase of the proposed supervised colour tex-
ture segmentation algorithm, a single sub image of size

Figure 4: Average percentage error of four colour images for
different values of K and β . Starting points of the curves at
β = 0, show the average percentage pixel misclassification
computed in first phase of the proposed algorithm.

32× 32 was used as the training image for each class. Im-
age observation model parameters, multichannel prediction
error and MGMM parameter sets were computed for this sub
image. Then these parameters are used to compute the ini-
tial class label field using Equation 17 for each of the four
test textured colour images shown in Figure 3. This initial
class label field is coarse in its spatial nature. Then, in the
second phase of the algorithm, this coarse class label field is
spatially regularized using Potts model. An iterative solution
to the Potts model was computed through conventional ICM
based on doubleton clique information.

We have evaluated the algorithm for all four textured
colour images with different values of hyperparameter β of
Potts model and for different number of components K in
MGMM. In our experiments β was varied from 0 to 7 with a
step of 0.5. Pixel misclassification percentage was computed
for K ∈ {1,3,5,7}. When K = 1, linear prediction error se-
quence is modelled through a single Gaussian following the
conventional model of the error sequence.

It is to note that the proposed method allows the descrip-
tion of a large family of distributions to model the pure colour
content of the image. For this, we are modeling the mul-
tichannel prediction error of our combined luminance and
chrominance structure model through MGMM to have the
pure colour information of the image. The Gaussian distri-
bution model (with a single component or a mixture model)
for the multichannel error sequence is indirectly serving as
the colour feature cue. One can observe that the percentage
pixel misclassification obtained by the proposed method is
minimum in the case of K = 1. This shows that the 2D multi-
channel complex version of QP AR linear prediction model,
proposed in this paper can be used to efficiently model the
textured colour images.

Figure 4 shows the graphical plot for average percentage
pixel misclassification results for these four textures against
different values of β and for different K. The values where
β = 0, are the pixel misclassification percentage obtained
without applying any spatial regularization technique (out-
put of the first phase of our algorithm). The minimum aver-
age percentage pixel misclassification for K = 1 is 3.079% at
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β = 2, for K = 3 is 4.754% at β = 4.5, for K = 5 is 4.18%
at β = 6 and for K = 7 is 3.693% at β = 5.5.

Analyzing the curve shown in Figure 4, another impor-
tant observation that could be made over the results is the
stability of the results when K > 3 for β ∈ [4,6]. Contrar-
ily, the results for K = 1 are unstable for β > 3. We can see
that overall results obtained in the case when multichannel
error sequence is modelled through a mixture of multivari-
ate Gaussian distributions are relatively much stable than the
case where it has been modelled through a single Gaussian
distribution. Figure 5 shows the segmented images for test
colour image 3. Higher values of K have better segmented
results with high values of β .

Even that we have several approaches for the estimation
of optimal values of hyperparameters of spatial regulariza-
tion techniques, adjustment or estimation of these parameters
is an open and well known problem. Normally researchers
adjust these values after extensive experimentation on their
test databases or a value that gives the best results for a cer-
tain test dataset is chosen [2], [6]. The stable results obtained
through our approach show considerable independence from
any “to be adjusted or estimated” parameter (β in the
case of ICM) of the spatial regularization techniques when
β ∈ [4,6].

6. CONCLUSION

In this paper a multichannel complex image observation
model for psychovisual colour spaces, is presented for su-
pervised colour texture segmentation. The model shows suc-
cess in modelling the complex colour textures with good
percentage pixel misclassification results. Also, multivari-
ate Gaussian mixture model for the multichannel complex
linear prediction error is presented which is normally mod-
elled by a single Gaussian distribution. The model has shown
some stable results in terms of percentage pixel misclassifi-
cation over changing values of adjustable regularization pa-
rameters. This percentage is computed for different num-
ber of components of mixture model and different values of
spatial regularization hyperparameter β . The results show
approximately same range of percentage pixel misclassifica-
tion as compared to the single Gaussian model but a certain
improvement in stability. Results obtained by this approach
also show a certain degree of independence from the effect
of manually set parameter for spatial regularization.
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