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ABSTRACT 
In this paper, we present an adaptive speech spectral ampli-
tude estimator that minimizes the Mean Square Error (MSE) 
under signal presence uncertainty. The spectral gain func-
tion, that is an adaptive variable-order Minimum MSE 
(MMSE) estimator, is obtained as a weighted geometric 
mean of hypothetical gains associated with speech presence 
and absence. The proposed estimator uses MMSE estimator 
considering various orders (powers) for the spectrum. The 
order of estimator and speech presence probability are esti-
mated for each time frame and each frequency component 
individually. Our evaluations confirm superiority of the pro-
posed method in noise suppression from corrupted speech. 

1. INTRODUCTION 

The speech collected from a noisy environment is predomi-
nantly degraded by additive background noise. Speech en-
hancement methods improve the performance of the speech-
based systems by enhancing the speech components in noisy 
speech. The main objective of speech enhancement methods 
is to improve one or more perceptual aspects of speech, such 
as speech quality and intelligibility. 
Here, we focus on the class of speech enhancement systems 
that capitalizes on major efficacy of Short-Time Spectral 
Amplitude (STSA) of speech signal on its perception. In 
these systems, the STSA of (clean) speech signal is esti-
mated and combined with the short-time phase of the de-
graded speech, to construct the enhanced signal.  
This research follows the works done by Ephraim and 
Malah (E-M MMSE) [1] for derivation of an MMSE STSA. 
Ephraim and Malah also proposed a modified version of the 
estimator for the Log-Spectral Amplitude (LSA) [2]; the 
modified technique minimizes MSE of the log-spectra based 
on Gaussian model for the spectral components of speech 
signal. 
The LSA estimator proved very efficient in reducing musical 
noise. Its modification under signal presence uncertainty is 
obtained by multiplication of spectral gain and conditional 
speech presence probability. This probability is estimated for 
each frequency bin and each frame [3]. Cohen proposed an 
Optimally Modified LSA (OM-LSA) estimator [4] that con-
siders optimal spectral gain function as a weighted geomet-
ric mean of hypothetical gains associated with the speech 
presence uncertainty. The exponential weight of each hypo-

thetical gain was its corresponding probability, conditional 
on the observed signal. 
On the other side, in [5], You et al. proposed β-order MMSE 
speech enhancement approach for estimating variable (β)-
order STSA of the speech signal. You et al. examined the 
effectiveness of various ranges of β in MMSE estimating of 
STSA. In their work, β value was adapted using the frame 
Signal-to-Noise Ratio (SNR). Evaluation results demon-
strate the superiority of this method in noise reduction and a 
better spectral estimation of weak speech spectral compo-
nents compared to that of [1]. 
In this paper, we propose a novel method, called Adaptive 
MMSE (AMMSE) that is a hybrid version of OM-LSA and 
β-order MMSE methods. By using the ideas of these two 
methods, we present an adaptive speech spectral amplitude 
estimator that minimizes the MMSE of speech signal spec-
tral amplitude under signal presence uncertainty. In the pro-
posed estimator, we simultaneously search for the optimal 
values of 1) probability of speech presence, and 2) the order 
of MMSE estimation for each frame and each frequency 
component. This leads us to an enhancement system with 
significant noise reduction in both high and low input SNRs. 
The system has also less residual noise compared to state-of-
the-art methods. 
This paper has been organized as follows. β-order MMSE 
estimator is explained in section 2. In section 3, we discuss 
the issue of speech presence uncertainty and present the pro-
posed AMMSE estimator. The procedure for determining 
proper value of β is expressed in section 4. In section 5, we 
explain simulations and performance evaluations. Finally, 
section 6 consists of some concluding remarks. 

2. BETA-ORDER MMSE ESTIMATOR  

Let ( )x t  and ( )d t  denote the speech and uncorrelated addi-
tive noise signal, respectively. The observed signal ( )y t  is 
given by 
 ( ) ( ) ( )y t x t d t= + . (1) 
After dividing into overlapping frames, we apply Short Time 
Fourier Transform (STFT) on each frame. In this regard, 

( , ) ( , )A k l X k l= , ( , )D k l  and ( , ) ( , )R k l Y k l=  denote 
spectral amplitude of speech, noise and observation signals, 
respectively; k  is the frequency bin index and l  is the time 
frame index. 
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We are looking for the estimate of ( , )A k l , named ˆ( , )A k l , 
that minimizes the mean-square error between β-order 
(clean) speech spectral amplitude and the β-order estimated 
speech spectral amplitude, i.e.  
 2ˆ{( ( , ) ( , ) ) }E A k l A k lβ β− , (2) 
where {.}E  denotes the expectation operator. The β-order 
MMSE estimator is given by [5]: 

 ˆ ( , ) { ( , ) | ( , )}A k l E A k l Y k lβ β= . (3) 
Assuming complex Gaussian pdf for each individual spec-
tral component of speech and noise, by minimizing the cost 
function in (2) with respect to ˆ( , )A k l , the estimate of the 
spectral amplitude of speech signal is then obtained by [5]: 

 1/ 2 1/ˆ ( , ) ( , ) [ ( 1) ( ;1; ( , ))]
2 2

A k l k l M k l ββ βη ν= Γ + − − , (4) 

where (.)Γ  is the gamma function, ( ; ; )M zα γ  is the con-
fluent hyper-geometric function, and ( , )k lη  and ( , )k lν  are 
defined as follows: 

 11 1( , ) [ ]
( , ) ( , )x d

k l
k l k l

η
λ λ

−= + , (5) 

 ( , )( , ) ( , )
1 ( , )

k lk l k l
k l

ξν γ
ξ

=
+

. (6) 

( , )d k lλ  and ( , )x k lλ  are the variances of noise and speech, 
and ( , )k lξ  and ( , )k lγ  represent the a priori SNR and pos-
teriori SNR, respectively [1]: 

 
2( , ) ( , )( , ) , ( , )

( , ) ( , )
x

d d

k l R k lk l k l
k l k l

λξ γ
λ λ

= = . (7) 

The variance of noise, ( , )d k lλ , is estimated using a Voice 
Activity Detector (VAD). Finally, the estimate of speech 
spectral amplitude component, ˆ ( , )A k l , is given as follows: 

 ˆ ( , ) ( , ) ( , )A k l G k l R k lβ= , (8) 

where ( , )G k lβ  is the gain function of β-order MMSE esti-
mator given by 

 
1( , )

( , ) ( 1) ;1; ( , ) .
( , ) 2 2

k l
G k l M k l

k l

β

β
ν β β ν
γ

⎡ ⎤⎛ ⎞= Γ + − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

(9) 

You et al. adapted the value of β (used in (9)) according to 
the frame SNR. Based on the analysis of the characteristics 
of β-order MMSE, it is desirable for β to increase as frame 

SNR (
2 2
0 0

( ) ( , ) ( , )
N N

x dk k
l k l k lλ λ

= =
Ξ =∑ ∑ ) increases, 

and to decrease when ( )lΞ  decreases. You et al. proposed 
following semi-linear relationship between β and ( )lΞ : 
 1 2 3 4( ) max{min[ ( ) , ], },l lβ µ µ µ µ= Ξ +  (10) 
where 1µ , 2µ , 3µ  and 4µ  denote linear coefficients. This 
approach has been found to be experimentally effective in 
achieving good simulation results for estimator [5]. 

3. SIGNAL PRESENCE UNCERTAINTY 

In this section, we introduce a new method for estimating 
the speech signal spectral amplitude under signal presence 
uncertainty. The proposed technique is similar to one de-
scribed by Cohen in [4], but instead of using LSA estimator, 
it uses β-order MMSE estimator. 
Given two hypotheses, 0 ( , )H k l  and 1( , )H k l , respectively 
indicating speech absence and presence in the k-th frequency 
bin of l-th frame, we have 

 0

1

( , ) : ( , ) ( , ),
( , ) : ( , ) ( , ) ( , ).

H k l Y k l D k l
H k l Y k l X k l D k l

=
= +

 (11) 

We assume that the STFT coefficients, for both speech and 
noise, are complex Gaussian variables. Accordingly, the 
conditional pdfs of observed signal are given by 
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2
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 (12) 

Appling Bayes rule for the conditional speech presence 
probability, we have 

 
1

1

( , )( ( , ) | ( , )) {1 (1 ( , ))
1 ( , )

exp( ( , ))} ( , ),

q k lP H k l Y k l k l
q k l

k l p k l

ξ

ν −

= + +
−

× −
 (13) 

where 0( , ) ( ( , ))q k l P H k l  is the a priori probability for 
speech absence. 
Based on the binary hypothesis model and equation (2), 

 1

0

{ ( , ) | ( , )}

{ ( , ) | ( , ), ( , )} ( , )

{ ( , ) | ( , ), ( , )}(1 ( , )).

E A k l Y k l

E A k l Y k l H k l p k l

E A k l Y k l H k l p k l

β

β

β
=

+ −

 (14) 

Using (3), we have 

 1
1/

0

ˆ( , ) { { ( , ) | ( , ), ( , )} ( , )

{ ( , ) | ( , ), ( , )}(1 ( , ))} .

A k l E A k l Y k l H k l p k l

E A k l Y k l H k l p k l

β

β β
=

+ −
(15) 

During speech absence, the gain is constrained to be larger 
than a threshold Gmin, that is determined by subjective crite-
ria for the noise naturalness. Let 
 

00{ ( , ) | ( , ), ( , )} ( ( , ) ) .HE A k l Y k l H k l G Y k lβ β=  (16) 
When speech is present, the conditional estimation of spec-
tral component is defined by 
 1{ ( , ) | ( , ), ( , )} ( ( , ) ( , ) ) ,E A k l Y k l H k l G k l Y k lβ β

β=  (17) 

where ( , )G k lβ  is the gain function of β-order MMSE esti-
mator, that was obtained in (9). Substituting (16) and (17) 
into (15), the spectral gain is determined via 
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 (18) 

 
Equation (18) presents the gain function for our proposed 
estimator (namely, AMMSE). Compared to the basic MMSE 
estimators (such as EM-MMSE [1] and LSA [2]), AMMSE 
has two additional parameters; the first parameter, β, is the 
order of MMSE estimator computed in a manner explained 
in the next section. The second parameter, ( , )p k l , is the 
estimation of conditional speech presence probability that is 
obtained by local and global spectral averaging in frequency 
domain [4]. These parameters make the speech signal ampli-
tude more accurate; resulting excellent noise suppression, 
while retaining weak speech components and avoiding the 
musical residual noise. 

4. PROPER VALUE FOR  
THE ORDER OF AMMSE ESTIMATOR  

In the proposed formula by You [5], the value of β is adapted 
semi-linearly according to the frame SNR (see Eq. (10)). It 
results in an equivalent value of β for all the spectral com-
ponents of a frame. Here, we propose a method for estimat-
ing the value of β for each frame and each spectral compo-
nent, individually, which makes the estimation more accu-
rate.  
As mentioned before, You et al. [5] proposed and validated a 
direct relation between β and the frame SNR. Also, it is ob-
vious that there is a direct relation between SNR and speech 
presence probability ( ( , )p k l ). Consequently, there is a di-
rect relation between β and ( , )p k l . Simplifying the issue, 
we consider a linear relation between β and ( , )p k l , and 
propose the adaptation of β according to the value of 

( , )p k l . By applying a linear relation between these two 
parameters, musical noise will be decreased and speech in-
telligibility will be increased considerably. 
Considering equation (2), and assuming 0β > , we re-write 
the cost function of estimator as: 

 ( ) ( )2ˆ ˆ( , ), ( , ), ( , ) ( , ) .C A k l A k l A k l A k lβ ββ = −  (19) 

Now, let 1 0β− < < , so β β= −  and the cost function can 
be re-written as: 
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β β

β β

β β

β

β

β

⎛ ⎞
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⎝ ⎠
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⎜ ⎟
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=

 (20) 

 
The denominator in (20) is an approximation of power spec-
trum to the exponent of 2 β . Therefore, taking a negative 
value for β has the effect of normalizing the cost function 
(19) (for positive β ) by the estimated power spectrum to 

the exponent of 2 β . This normalization increases the con-
tribution of spectral valleys in the cost function (estimation 
error) compared to that of spectral peaks. Actually, this em-
ploys masking properties of human hearing system that 
more noise is likely to be audible in speech spectral valleys 
than in speech spectral peaks. Consequently, the proposed 
estimator performs more accurate in the spectral valleys. 
Considering above explanations, we simplify the relation-
ship between the value of β and ( , )p k l  as following linear 
function: 
 ( , ) ( , )k l p k lβ α= × , (21) 
where 1 0α− ≤ <  is the linear coefficient.  
There is two important points here: 1) unlike the method by 
You et al. [5] that estimates β value for each frame, our pro-
posed method determines the value of β for each frame and 
each frequency component and its value is obtained by a 
linear relationship with the probability of speech presence; 
and 2) we consider negative values for β, that make our es-
timation more accurate in spectral valleys. 

5. PERFORMANCE EVALUATION 

For simulation, we have used eight (clean) speech signal 
samples (at the sampling rate of 16 kHz from TIMIT data-
base [7]) and made these signals noisy with white Gaussian 
noise. A wide range of input SNRs (-10dB, -5dB, 0dB, 5dB, 
10dB, 15dB, 20dB) has been considered in the experiments. 
Also, the value of α  (in equation (21)) has been empirically 
set to (-0.8). 
To evaluate the performance of the proposed method, we 
have used three objective measures: SegSNR, LLR distance, 
and PESQ [7]-[9]. We have compared the output of 
AMMSE algorithm with those for OM-LSA and β-order 
MMSE methods. The results have been drawn in figures 1, 
2, and 3 for SegSNR, LLR distance, and PESQ, respec-
tively. As shown, the proposed method has superior per-
formance in terms of all three quality measurements in vari-
ous input SNRs. 
We have also repeated the evaluations for the speech cor-
rupted by low-pass noises (such as pink and F16 noises from 
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Noisex database [10]). Similar comparative results demon-
strate the superiority of the proposed estimator. 

6. CONCLUSION 

In this research, we proposed an adaptive minimum mean-
square error (AMMSE) spectral amplitude estimator under 
speech signal presence uncertainty. The estimator is used for 
the enhancement of noisy speech. 
In this method, we use an MMSE estimator, whose order is 
adapted according to the probability of speech presence in 
each frame and each frequency component. The spectral 
gain function is obtained by modifying the gain function of 
the β-order estimator, based on binary hypothesis model. 
The modification includes a lower bound for the gain that is 
determined by subjective criteria for the noise naturalness, 
and exponential weights, which are given by the conditional 
speech presence probability. We also demonstrated that us-
ing negative value for the order of estimator makes the esti-
mation more accurate in speech spectral valleys and conse-
quently, results in greater speech quality improvement. 
The proposed method has been evaluated and compared to 
the conventional estimators, in various noise types and lev-
els in terms of SegSNR, LLR, and PESQ measures. Results 
show that the proposed estimator achieves better perform-
ance under all tested environment conditions. In this 
method, excellent noise suppression is obtained, while re-
taining weak speech components and avoiding the musical 
residual noise phenomena. 
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Figure 1 – The SegSNR comparison of proposed method with  

OM-LSA and β-order MMSE methods for white Gaussian noisy 
speech signal. 
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Figure 2 – The LLR comparison of proposed method with  

OM-LSA and β-order MMSE methods for white Gaussian noisy 
speech signal. 
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Figure 3 – The PESQ comparison of proposed method with  

OM-LSA and β-order MMSE methods for white Gaussian noisy 
speech signal. 
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