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ABSTRACT
We propose a low complexity multi-criteria quadratic pro-
gramming (MCQP) based approach for nonlinear channel
equalisation in wireless communications viewed as a clas-
sification problem. Compared to the standard SVM method,
the proposed MCQP approach not only provides a better per-
formance by introducing additional criteria to the objective
function, but also requires a much lower complexity by solv-
ing a set of linear equations. Besides, the MCQP based
equaliser achieves nearly the same performance as the op-
timal Bayesian detector. Furthermore, MCQP demonstrates
its effectiveness in tracking the time variation of communi-
cation channels.

1. INTRODUCTION

Nonlinear channel equalisation is a challenging analytical
problem for many digital communication systems [11]. This
is because of the nonlinear inter-symbol interference (ISI),
additive white Gaussian noise (AWGN) [2][6] and effects
of time-varying channels that can severely degrade the sys-
tem performance [5]. Further, algorithms performing non-
linear equalisation are often too computationally intensive to
be implemented in real time. The process of equalisation
is, thus, aimed to reconstruct transmitted symbols based on
observations of the corrupted channel. It is desirable that a
receiver requires a small set of training data to characterise
the transmission channel, hence making better use of band-
width. Equalisation is treated as a natural inverse filter [10],
and the equalizer forms an approximation of the inverse of
the distorting channel.

The recent advances in digital signal processing area al-
low many researchers to consider the problem of designing
new techniques for efficient nonlinear equalisers. Among
these techniques; the multilayer perceptron (MLP) [8] and
wavelet neural networks (WNN) [13]. Despite the impres-
sive performance obtained from these techniques, they are
still suffering from one or more of the followings: conver-
gence performance, structure complexity, and optimisation
computational complexity. In addition, the support vector
machines (SVMs) [11] and kernel based methods [7], asso-
ciated with their modified least squares support vector ma-
chines (LS-SVMs) [6], have become considerably spectacu-
lar. Their promising performance can be perceived in appli-
cations such as classification, regression, and density func-
tion estimation [3]. In SVM algorithms family, the input
data are non-linearly transformed to a higher dimensional
separable feature space via kernel mapping. A linear deci-
sion surface (hyperplane) is then constructed in the feature
space. The optimisation in SVM, however, is usually solved

by the quadratic programming (QP), which is computation-
ally costly.

In this paper, we propose a low complexity MCQP based
approach for nonlinear channel equalisation in wireless com-
munications. As an extension of the generalised learning
theory presented in [12], MCQP enables a performance im-
provement. In addition, MCQP is more computationally effi-
cient, compared to standard SVMs, because of the optimisa-
tion technique associated with MCQP only requires solving
a set of linear equations. The preceding advantages raise the
motivation to use MCQP for nonlinear equalisation. Simu-
lation results confirm performance enhancement of the pro-
posed MCQP over standard SVM based equaliser. It also
provides a performance close to that of the optimal Bayesian
detector. Furthermore, the MCQP based equaliser consider-
ably demonstrates its robustness to the time variation effects
of channel coefficients.

The rest of this paper is organised as follows. Section 2
describes the system model used including the channel model
used in the experiments. Section 3 presents the optimal
Bayesian symbol detector for binary decisions. Section 4
contains a brief description to the SVM based equaliser. In
Section 5, the proposed MCQP based equaliser is presented.
The computer simulations settings and results are discussed
in Section 6. The conclusion is drawn in Section 7.

2. SYSTEM MODEL

The communication system used in this paper is shown
in Figure 1. Assuming baseband transmission and perfect
symbol matching filtering associated with real valued data,
a discrete-time real channel can be considered to fit the
learning-based equalisers adopted. The channel model, ac-
cording to [11], consists of a deterministic term yp(k) and
random process term v(k) which represent additive Gaussian
noise samples. The deterministic term (2) is a polynomial
combination of order Pc of a linear, finite impulse response
(FIR) filter with length L, that is defined in (1). Hence, for
a transmit symbol d(k) ∈ {+1,−1}, the output of a general
form of nonlinear channel can be modelled as follows

yl(k) =
L−1

∑
l=0

hl(k)d(k− l) (1)

and

yp(k) =
Pc

∑
i=0

ciyi
l(k) (2)

so that the channel output is
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Figure 1: Discrete time system model

r(k) = yp(k)+ v(k) (3)

The channel output in (3) can be grouped into vectors of
length n as

r(k) = [r(k), r(k−1), ...,r(k−n+1)] (4)

where n is the dimension of received signal vectors that
is chosen to match the length of the channel so that the
equaliser output in Figure 1 is dependent on the length of
the ISI channel (i.e. n = L). This means that the number of
channel states (signal constellation) for the binary detection
is 2n+1 if no white random noise is added.

3. OPTIMAL BAYESIAN DETECTOR

The utilised optimal detector in this study is the Bayesian
or maximum a posteriori (MAP) equaliser. This section
presents the binary decision role for the Bayesian detector.
Bayesian equaliser works in a symbol-by-symbol manner,
with the aim that is to maximise posteriori of a symbol d(k)
is being transmitted, given the liklihood and the priori of the
observed signal [2].

Given a set of noise-free received vectors (i.e. chan-
nel states) {r+

i ,r−i }, the decision rule is to choose the op-
timal Bayesian symbol (d̂(k)) for a noisy received vector
(r(k), or r for simple notation). d̂(k) is estimated by

d̂(k) = sign{ fBAY ES(r)}=
{

+1, fBAY ES(r)≥ 0
−1, fBAY ES(r) < 0 (5)

where sign{.} denotes the decision function, and the optimal
Bayesian function is given by

fBAY ES(r) = ∑
N+

i=1 exp
(
−
∥∥r−r+

i

∥∥2
/2σ2

)
−∑

N−
i=1 exp

(
−
∥∥r−r−i

∥∥2
/2σ2

) (6)

where r±i = [yp(k), yp(k− 1), ...,yp(k− n + 1)] for d(k) =
±1, and 1 ≤ i ≤ N± respectively. N+ and N−in (6) refer to
the number of channel states for +1, -1 symbols (in this ap-
plication, N+ = N− = 2n). σ2 denotes the additive white
noise power. The Bayesian decision function in (6) assumes
equiprobable a priori probabilities and a binary decision so-
lution.

4. SVM BASED EQUALISATION

In this section, we briefly present the support vector ma-
chine (SVM) for binary classification problem. More details
of SVMs, and their application in digital communications
equalisation, can be found in [1, 3, 11, 12]. The fundamen-
tal principle of SVC is to find a linear hyperplane (w) , in
higher dimensional space, that maximize the distance (mar-
gin) between two different patterns. Hence, the optimisation
problem in its primal form is defined to

minimise 1
2 ‖w‖

2 +K ∑
P
i=1 ξi

sub ject to d̄i[φ(r̄(i))T w +b]≥ 1−ξi, (i = 1,2, ...,P)
(7)

where b is the bias term representing distance from origin and
φ(.) is nonlinear mapping that will be discussed in Subsec-
tion 5.2. r̄(i) = [r(i), r(i−1), ...,r(i−n+1)]T is the observed
data from the transmit training sequence d̄(i)∈ {−1,+1} for
1≤ i≤ P, where P is the size of the training set (the pilot size
in our application). For simple notation, we will use r̄i, d̄i in-
stead of r̄(i), d̄(i) for the rest of this paper. ξi in (7) are slack
variables for misclassification tolerance. By introducing La-
grange multipliers (γ’s) and applying Karush-Kuhn-Tucker
(KKT) conditions [3] for the optimisation of a constrained
function, the primal objective function with its constrains in
model (7) is converted to dual formulation. The optimisation
process, according to [12], is to find the values of γ ′s of SVC
that

maximise ∑
P
i=1 γi− 1

2 ∑
P
i=1 ∑

P
j=1 γiγ jd̄id̄ jK(r̄i, r̄ j)

sub ject to ∑
P
i=1 γid̄i = 0

0≤ γi ≤ K

(8)

where P is the size of training set and K is a controlling pa-
rameter for the optimisation stability. The dual form facil-
itates the nonlinear separable data patterns to depend only
on the size of training set not the dimension of high feature
space. The quadratic programming (QP) [11] is usually used
to minimise the objective function in (8). The nonzero values
of the optimisation solution are referred to support vectors
(SV) set that are used to construct the classifier in (10).

In the detection mode, the estimated symbols from the
SVC are expressed as

d̂(k) = sign{ fSVC(r)} (9)

where fSVC(.) is the classification function of the SVC,
which is defined as

fSVC(r) = ∑
i∈SV

γid̄iK(r, r̄i)+b (10)
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where b is a threshold term that indicates how far the origin is
from the hyperplane. SV is a set of support vectors which can
be partial or full of the training vectors. The powerful advan-
tage of SVs in SVMs is that only some of the training vectors
are used in the classification stage, hence, a huge saving in
detection complexity can be obtained.

5. MCQP BASED EQUALISATION

In this section, we present the multi-criteria convex quadratic
programming (MCQP) model [9] that is used to construct the
proposed equaliser. The MCQP uses training data, similar
to SVM, to estimate the decision function for the detection
stage. The estimated function is, then, used to perform the
classification to the testing transmission data.

For a binary classification problem, the idea of MCQP
model is based on maximising the external distance between
the two classes’ groups and minimising the internal distance
within the same class group. This model has two significant
advantages; the first is its relatively low complexity since it
only needs to solve a linear set of equations. The second ad-
vantage is the performance enhancement due to the introduc-
tion of internal distance to the optimisation object function.
Furthermore, kernel functions can also be used to solve non-
linear patterns. The following subsections develop the model
formulation for linearly and non-linearly separable patterns.

5.1 MCQP for Linearly Separable Patterns
Same as that in the SVC, the data patterns are separated by
a hyperplane of direction (w = [w1,w2, ...,wn]T , where n is
the data pattern dimension) and a scalar distance b from the
origin. The MCQP model is formulated as to

minimise 1
2 ‖w‖

2 +A∑
P
i=1 α2

i −B∑
P
i=1 βi

sub ject to d̄i(r̄T
i w−b) =−αi +βi, (i = 1,2, ...,P)

(11)
where A, B are arbitrary pre-defined model parameters that
control the optimisation objectives. αi,βi ≥ 0 represent the
slack distances for misclassification errors and the distances
of correctly classified points from the hyperplane respec-
tively.

Assuming αi = 0 for correctly classified points and βi =
0 for misclassified points, and by introducing ηi = αi− βi,
model (11) can be rewritten as

minimise 1
2 ‖w‖

2 + 1
2 A∑

P
i=1 η2

i −B∑
P
i=1 ηi + 1

2Cb2

sub ject to d̄i(r̄T
i w−b) =−ηi, (i = 1,2, ...,P)

(12)
the new term

( 1
2Cb2

)
in (12) is introduced to add strong con-

vexity to the objective function [9]. The weight C is an arbi-
trary positive number. By introducing Lagrange multipliers
(θi), The optimisation model in (12) including the Lagrange
function (13) can be obtained as follows

L1(w,b,η ,θ) = 1
2 ‖w‖

2 + 1
2 A∑

P
i=1 η2

i −B∑
P
i=1 ηi

+ 1
2Cb2−∑

P
i=1 θi[d̄i(r̄T

i w−b)+ηi].
(13)

A matrix-vector notation is adopted for simple notation
conventions. Let θ = [θ1,θ2, ...,θP]T , η = [η1,η2, ...,ηP]T

and e = [1,1, ...,1]T be column vectors of P dimension.
R =[̄r1, r̄2, ..., r̄P]T is a P× n matrix, and D̄ is a diagonal
matrix of diag(d̄1, d̄2, ..., d̄P). The optimal solution of (13)
can be obtained from the first derivatives so that

δ

δw
L1 = w−RT D̄θ = 0,

δ

δb L1 = Cb−eT D̄θ = 0,
δ

δη
L1 = Aη +Be−θ = 0,

δ

δθ
L1 = D̄(Rw−be)+η = 0,

(14)

thus, by simple manipulation to the equations in (14), the
optimum solution can be expressed as

θ =
[

1
A

I+ D̄
(

RRT +
1
B

eeT
)

D̄
]−1 [B

A
e
]

(15)

5.2 MCQP for Non-linearly Separable Patterns
For nonlinear separable clouds of data, the kernel mapping
[7] is utilised. By applying nonlinear mapping, through
the transformation function φ(.), the original nonlinear in-
put data space is transformed to a high dimension linearly
separable feature space. The kernel mapping, however, can
transform the inner product of the higher data vectors with-
out explicitly knowing φ(.). Therefore, the kernel mapping
is defined as

K(r̄i, r̄ j) = φ(r̄i)T
φ(r̄ j) (16)

and

K(R,RT ) =


K(r̄1, r̄1) K(r̄1, r̄2) · · · K(r̄1, r̄P)

K(r̄2, r̄1)
. . .

...
...

. . .
...

K(r̄P, r̄1) · · · K(r̄P, r̄P)


(17)

From model (12) and its optimal conditions (14), and by
substituting w = RT D̄θ , and replacing RRT by K(R,RT ),
we can reformulate the model as in (18) below

minimise 1
2 ‖θ‖

2 + 1
2 A∑

P
i=1 η2

i −B∑
P
i=1 ηi + 1

2Cb2

sub ject to D̄
(
K(R,RT )D̄θ −be

)
=−η

(18)
The Lagrange function to this model is

L2(θ ,b,η ,ρ) = 1
2 ‖θ‖

2 + 1
2 A∑

P
i=1 η2

i −B∑
P
i=1 ηi + 1

2Cb2

−ρT
[
D̄
(
K(R,RT )D̄θ −be

)
+η

]
(19)

where ρ = [ρ1,ρ2, ...,ρP]T are Lagrange multipliers for non-
linear scenario. The optimality conditions of model (19) are
then expressed by

δ

δθ
L2 = θ − D̄

(
K(R,RT )

)T D̄ρ = 0,
δ

δb L2 = Cb−eT D̄ρ = 0,
δ

δη
L2 = Aη +Be−ρ = 0,

δ

δρ
L2 = D̄

(
K(R,RT )D̄θ −be

)
+η = 0

(20)

Hence, the optimal solution is given by

ρ =
[

1
A

I+ D̄
(

K(R,RT )
(
K(R,RT )

)T +
1
B

eeT
)

D̄
]−1 [B

A
e
]

(21)
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Figure 2: Channel models; (a) Signal constellation for noise
free channel states. (b) Channel taps coefficients.

5.3 Symbol Detection by MCQP Equaliser
For digital communication channel equalisation, the train-
ing stage is accomplished through transmitting pilot symbols
(D̄), then receiving their corresponding channel outputs (R).
Thus, by applying (21), the equaliser parameters are evalu-
ated. Then, the symbol estimation, for an observed received
channel output (r), is estimated by the function (22) for de-
tection process.

fMCQP(r) =
(

K(r,RT )
(
K(r,RT )

)T +
1
C

eT
)

D̄ρ (22)

where, for binary signalling, the estimate of d(k) decision is
given by

d̂(k) = sign{ fMCQP(r)}=
{

+1, fMCQP(r)≥ 0
−1, fMCQP(r) < 0 (23)

6. SIMULATION RESULTS

In this section, we present the computer simulation config-
urations and settings of the proposed system followed by a
discussion to the obtained results. To simplify visualisation,
a channel model of 2 FIR taps were used (i.e. L = n = 2),
and the general channel output is defined as [5]

r(k) = y(k)+ µy3(k)+ v(k) (24)

where

y(k) = h0(k)d(k)+h1(k)d(k−1) (25)
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Figure 3: Training computational complexity comparison.

For all simulations, µ is chosen to be 0.1 and
[h0(k), h1(k)] = [0.5, 1] for time invariant model. For time
variant scenario, according to [4], h0(k), h1(k) are two time-
varying coefficients. These coefficients were generated by
passing white Gaussian noise of power β 2 = 0.01, and cen-
tred around [0.5, 1], through a Butterworth low pass filter.
The normalised cuttoff frequency ( fD) is 0.15 representing a
Doppler shift relative to symbol rate. The noise-free channel
states, for both time invariant and time variant, are shown in
Figure 2. The FIR channel coefficients variations are plotted
in Figure 2(b).

The MCQP parameters settings for simulations were as
follows; A = 0.9, B = 0.1and C = 0.5 based on empirical
tests. The training symbols (pilot) is set to P = 100. For non-
linear transformation by kernel function, the Gaussian radial
basis function (GRBF) is used as a preferred kernel for com-
munication applications [1]. The GRBF is defined as

K(ra,rb) = exp

(
−‖ra−rb‖2

2σ2

)
(26)

where σ is the kernel width parameter that is proportional to
the additive noise. The SVC is used for comparison. The
controlling parameter for the SVC (K) is set to 10. The ker-
nel function is chosen similar to that in the proposed MCQP
for fair comparison.

The computational complexity of the proposed equaliser
for training is tested in terms of computer execution time.
Figure 3 shows a comparison between the proposed equaliser
and SVC equaliser training time for different pilot sizes. Re-
sults confirm the massive reduction of the proposed equaliser
complexity where the computational complexity increase is
almost linear (i.e. ≈ O(P)) with respect to pilot size. This
is a massive reduction compared to that of SVC where the
trend follows a quadratic order (i.e. O(P2)).

The resulting BER curves of the Bayesian, SVC and
MCQP based equalisers are depicted in Figure 4. The re-
sults show the superb performance of the proposed equaliser
and its convergence to the optimal Bayesian detector, espe-
cially for SNR levels over 10 dB. It is also shown that the
high capability of tracking the time variation with the pro-
posed equaliser, where the MCQP performance for time vari-
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ant channel, with fast channel variation, is almost identical to
the SVC performance for corresponding static channel.

Figure 5 shows the learning curves of the proposed
equaliser. By stating learning curve, it is meant to describe
finding the sufficient number of training data that guarantees
best performance for a particular conditions. The results in
Figure 5 consider three levels of SNR (8, 12 and 16 dB) for
both time invariant and time variant scenarios. Curves show
steadiness after approximately 80 symbols of pilot, hence a
pilot of size 100 were chosen in the simulations. Moreover,
curves confirm the close performance between time invariant
and time variant scenarios.

7. CONCLUSION

The MCQP method of classification has been applied for
nonlinear channel equalisation, which demonstrates a per-
formance close to that of the optimal Bayesian detector.
Compared to the SVM based equaliser, the proposed MCQP
based approach has two advantages. First, it introduces the
internal distance criteria to the objective function which im-
proves the equalisation performance. Second, the optimi-

sation in MCQP requires solving a linear set of equations,
hence, a considerable reduction in the training computational
complexity can be attained. Simulation results show that the
proposed MCQP based equaliser outperforms, in terms of
BER, the standard SVM based equaliser as well as reducing
the training computational complexity significantly. Further-
more, the proposed equaliser has shown superb robustness to
the time variation of the communication channels.
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