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ABSTRACT
This paper investigates mercury/waterfilling (MWF) power
distribution policy for multi-carrier systems and its poten-
tial benefits. Comparing the performance in terms of bit er-
ror rate with conventional bit loading algorithm for practi-
cal systems, like Levin Campello (LC), we demonstrated that
its power distribution is not optimal as widely believed due
to the gap approximation inaccuracy for low constellation
sizes. This fact can be used to improve system stability by
achieving lower bit error rates or decreasing noise margin.
Furthermore, we proposed a new formulation for throughput
optimization seen as a combinatorial problem due to discrete
nature of modulations used in practical systems. Moreover,
we developed a new bit loading algorithm based on MWF as
solution to this problem that gives higher throughput than LC
under the same set of constraints. We also developed an al-
gorithm for power minimization that enables power savings
compared to LC while keeping the same quality of service
as before. These strategies can be beneficial to operators in
reduction of their operational costs.

1. INTRODUCTION

In recent years, telecom operators showed a strong interest in
improving the capacity utilization of their twisted-pair access
networks. During the last two decades, several families of
digital subscriber line (DSL) have been developed, standard-
ized and installed. Some of them like the family of ADSL
[1] and VDSL [2] technologies are based on multi-carrier
discrete multi-tone modulation (DMT).

The allocation of power in order to maximize the
throughput of conventional multi-carrier DSL systems was
done by assuming that the inputs were Gaussian and then us-
ing the implementation gap in order to satisfy the capacity
equation waterfilling policy was applied. The implementa-
tion gap introduced in capacity equation depends on mod-
ulation type and coding schemes and includes the Shannon
gap approximation and a noise margin. It was demonstrated
in [3] and [4] that Shannon gap can be approximately con-
sidered independent of constellation size for QAM modu-
lation. Nevertheless, waterfilling policy gives real number
of bits, not discrete, that has no meaning for practical sys-
tems. For practical system with constellation size constraints
some of the algorithms developed can be found in [5] and
[6]. Using the same gap approximation approach, in [7, 8, 9]
the optimal power and bit allocation algorithm, named Levin
Campello (LC), for practical multi-carrier systems is pre-
sented. This procedure certainly does not give the optimum
power distribution because all procedures assume Gaussian
inputs, but it was implemented in lack of explicit expression

for the throughput function. Yet, recently in [10], fundamen-
tal relation between mutual information and minimum mean
square error of conditional estimator was revealed. Based on
this work Lozano in [11] formulated power allocation policy
for arbitrary inputs of Gaussian parallel channel named mer-
cury/waterfilling (MWF). It is using computable nonlinear
MMSE of the inputs given their noisy outputs. In this way
he went around the need for explicit mutual information ex-
pressions.However, this procedure needs to know in advance
what inputs each channel has and it must be fixed. Thus, this
is not a bit loading procedure.

In this paper we will first analyze the difference between
mercury/waterfilling (MWF) policy from [11] and Levin
Campello (LC) algorithm of [7, 8, 9] in terms of bit error rate
(BER) for the same bit distribution. Thus, we will demon-
strate that LC algorithm does not give the optimum power
distribution since with MWF policy much lower BER can be
obtained. Without going any further, this fact can be used
to reduce the noise margin or improve the stability of the
system. Taking the advantage of this fact, we formulated a
new problem for throughput optimization. In order to solve
this complex combinatorial optimization problem, we devel-
oped a novel bit loading algorithm based on MWF policy
with the same set of restrictions as LC. We start with LC bit
distribution and search for a better one that will give higher
throughput. Therefore, we do not assume that we know the
bit distribution in advance like in ordinary MWF, but rather
improve the throughout of the system keeping the same BER
and aggregate power constraints as in LC algorithm. En-
ergy consumption accounts for a big deal of operating ex-
penses.Therefore, operators can choose power savings while
keeping the same quality of service parameters. Hence, in
this paper we also developed an algorithm based on MWF
for power minimization while keeping the same throughput
and BER that can be achieved by LC algorithm. Assuming
the same discrete set of constellations inherited by involving
MWF, the power minimization is also a complex combinato-
rial optimization problem. Although we used DSL systems
for evaluation of our approaches, they can be applied on any
multi-carrier system.

The rest of the paper is organized as follows: Section 2
gives a brief overview of the MF from [11]. In Section 3
we discuss the problem that we are trying to solve. Section 4
describes the novel algorithms and Section 5 gives simulation
results and discussions that verify our approach. Section 6
concludes the paper with the major findings.

2. PRELIMINARIES

In order to optimize the system performance the most known
and used criterion is the maximization of the input-output
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mutual information under a power constraint.
When the transmitted symbols are Gaussian, this crite-

rion leads to the classical waterfilling policy, and when the
mutual information is constrained due to the use of discrete
constellations, the optimum policy is mercury/waterfilling
(MWF) [11]. Moreover, this policy has no need for any gap
approximation.

The independent N parallel Gaussian channels can be
modeled as:

Yk = hkXk +nk (k = 1 . . .N), (1)

where nk is a zero - mean complex Gaussian random vari-
able independent of the noise on the other channel and hk is
non zero channel gain. The complex valued inputs Xk are as-
sumed to be independent and considering unit-power inputs
Sk can be written as Xk =

√
pkSk, where pk ∈ [0,∞) is the

power allocated to sub-channel k. Any multi-carrier system
can be represented in this way.

Under the aggregate power constraint Pmax and the as-
sumption that the inputs are normalized with respect to power
constraint, the problem that was solved in [11] is the follow-
ing:

[p?
1 . . . p?

N ] = arg max︸︷︷︸
p1...pN
∑i pi=1

N

∑
i=1

Ii(SNR). (2)

where pi is the normalized power that should be assigned to
the tone i, and Ii is the mutual information of the correspond-
ing constellation.

The fundamental relation for any arbitrary input distribu-
tion revealed in [12] and used in further elaboration is given
as:

d
d(SNR)

Ik(SNR) = MMSEk(SNR), (3)

where Ik is mutual information in Neper and MMSEk is the
mean square error of the Conditional Mean Estimate (CME)
of the date in the kth sub-channel with SNR signal to noise
ratio.

To obtain the solution to this problem it is assumed that
the receiver has the knowledge of magnitude and phase of
channel gains. On the other hand the transmitter needs only
the knowledge of the magnitudes. The power allocation
{p?

i }
N
1 that solves (2) is given in [11] by:

p?
i = 0, γi ≤ λ , (4)

γiMMSEi(p?
i γi) = λ , γi > λ , (5)

where λ is obtained from power constrained and γi is the
normalized channel gain according to the power constraint.

The MMSE is a nonlinear function that is different for
each constellation and if symbols are considered equally
probable the expression given in [11] is:

MMSE(SNR) = 1− 1
Mπ

∫ ∣∣∣∣∑m
l=1 sle−|y−

√
SNRsl|2

∣∣∣∣2

∑
m
l=1 e−|y−

√
SNRsl|2

dy.

(6)
Taking into consideration that the integral in equation 6 does
not have analytical solution it is very unpractical to imple-
ment MWF policy using this expression due to number of
constraints. Therefore, we suggest to use two different ap-

proximations for MMSE in high power regime that can be
assumed for vast number of applications. For example in
DSL large SNR per tone is needed in order to achieve de-
sired BER of 10−7.

In [11] it is shown that the allocated power can be rep-
resented as reciprocally dependent to minimum distance that
conform to input discrete constellations. Given the minimum
distances {di}n

i=1 optimum power in high power regime can
be seen as:

p?
i =

α

γid2
i

+O
(

logP
P

)
(7)

with
1
α

=
1
n

n

∑
l=1

1
γid2

l
(8)

As demonstrated in [13] MMSE for large SNR can be ap-
proximated as the π times the symbol error rate (SER) of the
received constellation. Therefore the optimum power alloca-
tion for QAM constellations can be approximated as:

p?
i = 0, γi ≤ λ , (9)

p?
i =

2
γi

Q−1
(

Mλ

Kπγi

)
dimin

2

, γi > λ (10)

where K is the number of pairs of points at minimum distance
and M is the constellation size.

3. PROBLEM DEFINITION

For typical constellations, larger constellation sizes corre-
spond to larger values of mutual information for any signal
to noise ratio (SNR). For maximum mutual information, the
richest available constellation should be used on each tone.
Therefore, the definition of a bit loading policy under the
maximization of the mutual information criterion is mean-
ingless, and it is necessary to introduce some other prac-
tical constraints involving the achieved BER performance.
Thus, given the arbitrary normalized channel inputs that can
be chosen from a set of discrete constellations C with car-
dinality C , the problem that we are trying to solve can be
expressed as follows:

[p?
1 . . . p?

N ] = arg max︸︷︷︸
p1...pN , j

N

∑
i=1

Ii(SNRi,c j(i)), (11)

s.t.∑
i

pi = Pbudget , (12)

Pe ([p?
1 . . . p?

N ])≤ BERtarget , (13)

j = 1, . . .(C )N , (14)

where

c j = [c j(1), . . .c j(N)] , (15)
c j(k) ∈ {0, . . . ,C } , (16)
k = 1, . . . ,N, (17)

where p?
i is the optimum power for sub-carrier i, pi is the

power for sub-carrier i, Ii is the mutual information for sub-
carrier i that depends on signal to noise ratio (SNR) and vec-
tor c j. Vector c j has as elements the current bit distribution
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for each sub-carrier. These entries are denoted as c j(i) for
sub-carrier i and they can take values from the set 0 to C .
The index j defines all possible combinations of bit distri-
butions and it goes from 1 to C N . Equations (16) and (17)
denotes the element of vector c j(k) for kth sub-carrier.

Basically, we are trying to find the variation with repe-
tition of constellation sizes on each tone or bit loading that
will give the highest value for aggregate mutual information
satisfying BER requirement. This problem having discrete
set of input constellations presents complex combinatorial
optimization problem. Certainly, in order to find the opti-
mum solution brute force algorithm can be applied, but this
is only efficient for very small number of tones and constel-
lations. If we have N tones and C constellations there will be
C N possible solutions that should be investigated. For prac-
tical systems such as DSL, where number of tones is 512 for
ADSL2+ [1] and 4096 for VDSL2 [2] and they use QAM
constellations that can have sizes from 1 to 15 points, this
approach is impossible. Therefore our goal is to find sub op-
timum solution that will satisfy the above constraints and we
will demonstrate that it can achieve better throughput than
the one obtained with LC algorithm.

The same problem can be seen as power minimization in
the following manner:

min
N

∑
i=1

pi(c j(i)), (18)

s.t.∑
i

Ii(SNR,c j(i)) = Rtarget , (19)

Pe ([p1 . . . pN ])≤ BERtarget (20)

j = 1, . . .(C )N , (21)

where

c j = [c j(1), . . .c j(N)] (22)
c j(k) ∈ {0, . . . ,C } (23)

k = 1, . . . ,N (24)

The notation has the same meaning as explained above.
This is also a combinatorial optimization problem.

4. NOVEL ALGORITHMS

As we will demonstrate later, for the same constellation dis-
tribution among tones that is obtained with conventional LC
algorithm, MWF has better performance in terms of BER.
Therefore, this can be exploited to make the system more
stable or to reduce the noise margin in order to keep the
same performance. To take the advantage of this fact also
two different strategies can be applied. First strategy that
we propose is to find the bit loading or constellation distribu-
tion that will have better performance than LC solution while
having the same aggregate power and BER. The other strat-
egy is power minimization, where aggregate power can be
decreased keeping the same throughput and BER of the sys-
tem. This approach is similar to margin adaptive algorithms,
but our solution due to combinatorial problem does not guar-
antee that the solution is optimum.

Algorithm 1 Optimization Bit Loading Algorithm
Calculate power and bit loading using LC algorithm bLC
Calculate bit error rate for LC solution BERLC
Set MWF bitloading bMWF = bLC
Calculate power distribution using MWF for bit loading
bMWF
Calculate bit error rate BERMWF for bMWF
if BERMWF ≥ BERLC then

End the algorithm. No improvement
end if
repeat

for i = 1 to N {Do for every tone} do
bMWF(i, :) = bMWF(i)+1{Increase for one bit on cur-
rent tone }
Calculate power distribution for bMWF with MWF
Calculate BER BERMWF for bMWF

end for
Find for which tone k BERMWF is minimum
Set bMWF = bMWF(k, :)

until BERMWF < BERLC

4.1 Bit Loading Algorithm
As already explained due to combinatorial nature of the prob-
lem we are trying to find suboptimal solution for the problem
imposed in (11) that will satisfy constraints (12), (13) and
(14).

As constraints we assume that the aggregate power has
the same value for both LC and MWF and target BER should
be less or equal to the BER obtained with LC. The pseudo
code for the algorithm that we propose is labeled as 1.

Since we are trying to find a bit loading distribution that
will give higher throughput than LC policy we take as a start-
ing point the solution that is obtained with this procedure.
Then, we calculate the power distribution using MWF as ex-
plained in Section 2. For this power distribution among tones
we calculate the BER that can be achieved. If it is the same
as for LC then this is the solution and no improvement in
throughput is possible. If this is not the case then we search
for better solution by forming new set of possible bit load-
ing combinations where each member has one bit added on
different tone. Now we search for new bit loading among
the members of this new set and choose the one with lowest
BER. The process is repeated iteratively until target BER is
reached.

The complexity of the algorithm includes the complexity
of LC and MWF. Besides, it must run thorough all bit load-
ing cases of a newly formed set that has number of carriers
members until the desired BER is achieved. Therefore, it
has extra complexity of number of carriers times number of
iterations needed to achieve the desired BER.

4.2 Power Minimization Algorithm
Since MWF gives optimal power distribution for a discrete
input constellations some savings in power consumption
compared to conventional LC algorithm can be achieved. In
order to evaluate this gain we propose an algorithm labeled
as 2. The algorithm first calculates the bit loading that is
derived from LC, then calculates BER that can be achieved
with such a power distribution. Afterwards, for the same bit
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Algorithm 2 Optimization Bit Loading Algorithm
Calculate power and bit loading using LC algorithm bLC
Calculate bit error rate for LC solution BERLC
Set MWF bit loading bMWF = bLC
Set power constraint to Pbudget used for LC
repeat

Calculate power distribution with MWF
Calculate BER BERMWF
Set Pbudget = Pbudget −∆p

until BERMWF < BERLC
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Figure 1: BER performance of LC algorithm, MWF with
SER and minimum distance approximations dependent of ca-
ble lengths.

loading the algorithm calculates optimum power distribution
using MWF policy and calculates BER that can be achieved.
If this BER equals BER obtained with LC no power savings
can be obtained. If not, the algorithm decreases the aggregate
power for some step and recalculates the power distribution
and BER by using MWF. The process iterates until the BER
is smaller or equal to the one obtained with LC power distri-
bution. The complexity of this algorithm includes the com-
plexity of LC and MWF plus the number of iterations that
are needed to achieve the desired BER.

5. SIMULATION RESULTS AND DISCUSSIONS

In order to evaluate the performance of the algorithms pre-
sented in Section 4 some simulations were performed. For
this purpose we used DSL channel model from [14] and the
rest of the parameters were according to ADSL2+ standard
[1]. Thus, we assumed Γ = 12dB as the implementation
SNR gap for LC algorithm, the background noise level was
set at −140dBm/Hz and tone distance was 4.3125kHz. For
MWF no gap is needed. Moreover, to take into account the
alien noise, in addition to the background noise, we have also
added the ETSI ADSL Noise A [15]. We considered cable
of 0.4mm (AWG24) for different lengths that were between
500m and 2000 m. As FEXT disturbers we considered 19
users that have the same length as a particular modem of in-
terest. We did not consider NEXT since in today systems it
can be avoided by echo cancellation or FDD techniques. We
considered only downstream.

Figure 1 represents BER as a function of length for LC al-
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Figure 2: Relative gain in BER Performance of MWF with
SER and minimum distance approximations compared to LC
algorithm for different cable lengths.

gorithm and MWF with two different approximations (equa-
tions (7),(8), (9), (10)) for MMSE using the same bit load-
ing. As can be noted MWF has better performance over LC.
This improvements is better for longer cables. Channel gain
for longer cable is lower and therefore the constellations that
have fewer number of points are chosen. Since MMSE for
those constellations is further away from Gaussian inputs,
MWF distributes power in an optimal way and achieves bet-
ter performance. Also it is obvious that approximation of
MMSE that is proportional to SER shows slightly better re-
sults because the bound is tighter. Figure 2 shows the relative
gain in BER that can be achieved by MWF policy. The im-
provement is in the range of 10% on shorter lines up to 70%
on longer lines.

Figure 3 presents relative gain in throughput that can
be achieved by implementing algorithm 1. As can be seen
the throughput that can be achieved is better from LC for
0,2% on short lines up to 5% on longer lines that use smaller
constellation sizes on more tones. Two MMSE approxima-
tions has almost the same performance. Minimum distance
approximation is faster and easier to implement. This im-
provement can be beneficial for users that are further away.
Clearly, increasing the range just a little can offer a dramatic
savings to operators operational costs. Also the operators can
deliver new services to the users that are further and that did
not have them before.

Figure 4 shows excess power needed for LC algorithm
compared with MWF policy assuming the same throughput
and BER requirement. As it can be noted the excess power
for short lines is small around 0.2% while for longer lines this
extra power needed for LC increases to almost 10%. Tak-
ing this into cosideration operators can reduce substantialy
their power consumption by implementing MWF policy with
reduced aggregate power while achieving the same quality
of service as in todays systems. Also electromagnetic com-
patibility issues can be relaxed since less power means less
egress radiation. The difference between the two MMSE ap-
proximation is not significant.

6. CONCLUSION

In this paper we presented a new approach to bit loading and
power minimization problem for DSL systems. We demon-
strated that usual bit loading techniques such as LC algo-
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Figure 3: Relative gain in throughput of MWF with SER and
minimum distance approximations compared to standard LC
approach for different cable lengths.
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Figure 4: Relative excess power needed for LC power distri-
bution compared with MWF policy with SER and minimum
distance approximations for the same BER and throughput.

rithm does not give optimum power distribution for practical
multi-carrier systems where discrete constellations are used.
Applying MWF power distribution policy for the same con-
stellations allocation as for LC, BER can significantly be im-
proved. Taking the advantage of this fact we developed two
sub optimal algorithms based on MWF policy that can im-
prove overall system throughput or reduce power consump-
tion while maintaining the same BER restriction as LC al-
gorithm. These improvements are higher for the users that
are using longer lines, because MWF policy treats the de-
viation of smaller constellations from Gaussian assumption
of channel inputs better than the gap approximation. These
algorithms can be beneficial for operators since they can re-
duce their operational costs.
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