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ABSTRACT the components off have negligible amplitude. In particular, a sig-

Recent studies reveal that if a signal is highly compressible in somBal f is L-sparse in basi# if the corresponding weight vectev
orthonormal basis, then an accurate reconstruction can be obtainbésL non-zero componentsd (< N). In a real-world scenarid
from random projections using a very small subset of the projecis not strictly L-sparse, but it is said to beompressiblevhen the
tion coefficients, and thus, reducing the complexity of the sensingie-ordered components afdecay at a power-law.

system. A Bayesian framework was introduced recently with re-  Consider also aM x N measurement matri, M < N, where
spect to the reconstruction of the original (noisy) signal, providingthe rows of® are incoherent with the columns @. For example,
some advantages when compared with reconstruction methods, efat @ contain independent and identically distributed (i.i.d.) Gaus-
ploying norm-based constrained minimization approaches. Thessian entries. Such a matrix is incoherent with any fixed transform
Bayesian methods were designed by using mixtures of Gaussianswatrix ¥ with high probability (universality property) [5].
approximate the sparsity of the prior distribution of the projection |f the signalf is compressible inP, then, it is possible to per-
coefficients. However, there are cases in which a signal exhibits form directly a set of compressed sensing (CS) measurengents
highly impulsive behavior, and thus, resulting in an even sparser cahrough random projections. That is, theth CS measurement,
efficient vector. In this paper, we develop a Bayesian approach fag,  results by projecting” onto a random linear combination of
estimating the original signal based on a set of compressed-sensi basis functionsgm — ]?T(‘I’(hn) ., where g € RN is a ran-

measurements corrupted by heavy-tailed noise. The prior belief th P
the vector of projection coefficients should be sparse is enforced b om vecior with i.i.d. components. The CS measurements can be

fitting its prior distribution by means of a heavy-tailed multivariate Writtén in the following compact forng = $wTf=$wW, where
Cauchy distribution. The experimental results show that our pro® = [@1,...,@u]". Thus, the problem of reconstructing the original
posed method achieves an improved reconstruction performance, signall f from the CS measuremens is equivalent to estimating
terms of a smaller reconstruction error, while increasing the sparsitihe (sparse) weight vecter!

USing less basis funCtiOhS, Compal’ed with the I’ecently introduced Most of the recent literature on CS [6, 7] has concentrated on

Gaussian-based Bayesian implementation. constrained optimization-based methods for signal reconstruction.
For instance, th&;-norm minimization approach seeks a sparse
1. INTRODUCTION weight vectow¥ by solving the following linear problem,

Sampling is a key concept of signal processing because it allows ~ i .
real-world signals in the continuous-domain to be acquired, rep- W= argmﬁlln||w\|l ; St g=@W. @)
resented, and processed in the discrete-domain. In many modern

applications, including digital image and video cameras, the classirhe main approaches for the solution of such an optimization prob-
cal Shannon/Nyquist sampling rate is so high, resulting in too manyam include linear programming [8] and greedy algorithms [9], re-
samples, and thus, making compression a necessity prior to storaggmng in apoint estimatef the weight vectowv.
or transmission. _Several works [1, 2, 3] have shown that many natu- | recent studies [10, 11, 12, 13], the inversion of CS measure-
ral signals result in a highly compact (sparse) representation, whefents was considered from a probabilistic/Bayesian perspective. In
they are projected on orthonormal basis functions (e.g.,wavelets a’lférticular, given a prior belief that the weight vectrshould be
sinusoids). The traditional approach to compressing such a SParBarse and the set of CS measuremgritsbservables), the objec-
signal is to compute its transform coefficients and then store Ofye s to formulate aosterior probability distributiorfor W. This
transmit only a small number of large amplitude coefficients. approach improves the accuracy over point-estimate methods and
Compressed Sensing (CS) is a new framework introduced resrovides confidence intervals (error bars) in the approximation of
cently for simultaneous sensing and compression [4, 5]. CS enablqs For computational purposes, and in order to get closed-form

a potentially significant reduction in the sampling and computation,, . o<sions, current Bayesian techniques employ the multivariate
costs at a sensor with limited capabilities. According to the C aussian diétribution as the prior probability model

framework, a signal having a sparse representation in a transform In the present work, the estimation wfis also performed in

e o il 51O FCIEnS 9710 gayesian frameyorc Hawever, et are many cases i which
Let “I, be aN x N matrix, whose columns correspond to tHe a signal eXhIl_)IFS a highly impulsive behawo_r, resultln_g in an even
: ) ' i - N sparser coefficient vectet. In contrast to previous studies, our pro-
transform basis functions. Then, a given sighal R™ can be rep-  posed method consists of modeling the prior probabilityvafith
resented ag = W, wherew € RN is the weight vector. As men- a heavy-tailed distribution, which promotes the sparsityofhis
tioned above, for many signafspresent in nature, the majority of is motivated by the fact that a heavy-tailed density function is suit-
able for modeling highly impulsive signals. In particular, in our
This work was funded by the Greek General Secretariat for Researchase,W can be considered as a highly impulsive “signal” since it
and Technology under ProgramENEA-Code 0369 and by the Marie
Curie TOK-DEV “ASPIRE” grant (MTKD-CT-2005-029791) within thé'6 Lobviously, f andw are equivalent representations of the signal, \fith
European Community Framework Program. being in the time (or space) domain amdn the (transform)¥ domain.
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is characterized by a large number of small-amplitude component:srzi = 0 depending on whether thegh component is significant and
and a small number of large-amplitude components. For this puractivated in the mixture or not. In the general case, the Gaussian
pose, a multivariate Cauchy distribution (which is a member of thepart of each mixture component may be chosen from a s€ of
so-called sub-Gaussian family) is employed to model the heavyGaussians, withiy, € {1i}2 ; ando? € {02}2_,. In the present
tailed behavior of, as well as the noise corrupting the projection g4 \we consider for simplicity thaxlrz € {08, 02}, wherea? =0
coefficients, since it models efficiently highly impulsive environ- p " 0 i

ments [14, 15] and also it yields closed form expressions in the sug® enforce sparsity, angy; < {0, 1}

sequent Bayesian inference.

The rest of the paper is organized as follows: in Section 2, the3. ESTIMATE A SPARSE VECTOR VIA AN MVC PRIOR
heavy-tailed statistical signal model is described briefly. In Sec;
tion 3, the CS inversion process for the estimation of the weigh
vectorw is analyzed in detail. In Section 4, the performance of
the proposed method is compared with the original Bayesian C
method first introduced in [13]. Finally, in Section 5 conclusions
are drawn, together with directions for future work.

n this section, we describe the process for reconstructing the sparse
ectorw from the CS measuremeris Following the above anal-

sis, this process is reduced to finding the (sparse) set of the most
robable basis configurations (columns®f associated with the
activated mixture components. Then, their corresponding posterior
probabilities are employed to obtain a Minimum Mean Squared Er-
ror (MMSE), as well as a Maximum A Posteriori (MAP) estimate

2. STATISTICAL SIGNAL MODEL of the sparse vectat.

As mentioned in the previous section, the representation of the The posterior probability of a giveTf is given by Bayes’ rule:
time-domain signaff, is equivalent to its representatighin the
frequency-domain (for instanc@, may contain the wavelet coeffi-
cients off). Thus, without loss of generality, in the following study
we consider that the noisy CS measurements are acquired in the
transform domain, using the model:

p@E™)p(T)

L (
PEI0) = s pla)p(®)

(4)

where.7 = {0,1}N contains the2N possible basis configurations.
L Let .7 be the subset of7 containing the vectorg with the most
g=®w+n, @) significantposterior probabilities. We expect that the sizefwill

. 1)1
where the measurement matéixis described in Section 1, ardis be much smaller than the size gt and thus, th¢ p(7'|g) }r-< 7; can

the associated noise component. Assuming that métiskknown, D€ estimated fronip(g|T’) p(?/)}f’eﬁ/-

the quantities to be estimated, given the CS measurerggats the The basis selection metric, for the MvC prior model, which is
sparse weight vecta? and the noise underlying variangg. Inthis  used to decide whether to include a giveim .7}, or not, is defined
work, the assumption that andj are highly sparse is formalized S follows:

by modeling their prior distribution using a member of the so-called

sub-Gaussian SymmetricStable 6a'S) family [16, 17]: p(7,9) = In[p(g|7) p(7)] = In[p(g|T)] + In[p(7)]
Definition 1 A vectorw is called a sub-GaussiaBa Srandom vec- = In [% 1 In[|R(T)|]
tor (in RN), with underlying Gaussian vect@, iff it can be written niM+1)/ 2
asw = Al/2G, whereA s a positive -stable random variable with M+1 - 1 N1

' q - ——1Inj1 —Hg)' R(T —q InfAg],
parametersh ~ Sy »((cos® )%/, 1,0) andG = [G1,Gy,...,Gn]" 2 [1+(@- ) R(T) (@~ Fg)] + v [A]
is a zero-mean Gaussian random vector, independefy with co- (5)

variance matrixx.

A multivariate sub-Gaussian distribution, with underlying covari- Where

ance matrix>2 and location parametgt, is often denoted byr- i =
SG(i,X), where the parametar is the characteristic exponent, ; In[Ax] = [[7lloIn[A1/Ao] +NIn[Ao] ,
controlling the heaviness of the tails of the marginal sub-Gaussian =

distributions. The multivariate Cauchy distribution (MvC)ds  and||7||o is equal to the number of non-zero (“activated”) compo-

SG(1, X) for a = 1, and its density function is given by: nents oft.
r(NL) s T IR 1 MMSE and MAP estimate ofw
p(X) = n((N+21)/)2‘2| : [l_i_(z_“)TE 1(*-#)} ) 3. SE and estimate ofw

A computationally feasible approximation of the MMSE estimate

wherer (-) is the Gamma function arid| denotes the matrix deter- of W, using only the most significant posterior probabilities, is given

minant by:
In (2) we consider thatw ~ 1-SG[i,X), where & = Wumse = Y P(TIGE{WG, T}, (6)
diag(oZ,...,08) andfj ~ 1-SG0, 02Ty m), whereQ is aM x 1 =

zero vector andy «v the identity matrix. The stability property here for the approximation GE{w|g, 7} we use the underlying

states that the sum of two sub-Gaussian (and consequently . IS S A
multivariate Cauchy) distributions with the sarae is again sub- n%z:zzin part of the 1-Si{, R) distribution, resulting in the ex-

Gaussian (multivariate Cauchy). Thus, the measurement \@setor

1-SGfig = @[, R := 828" + 021). I T 1
From the above, the multivariate Cauchy distribution can be E{w|g, T} = i+ X(T)® R(T) (3 fg) - Q)

viewed as a mixture of Gaussians scaled ISp&r.v. A2, where ) i o

3, and thusR, are determined by a discrete random veater ~ OnN the other hand, the MAP basis configuration is giverivpye =

[ro,...,TN,ﬂT of mixture parameters. In the following, we will arg ma)%E_ﬂf P(T|9). resulting in the following approximation of the

denote the matrices B(T), R(T). For simplicity (as in [13]), we ~MAP estimate of#:

assume that ~Bernoulli(A1), that is,Pr(1j = 1) = A; andPr(1j = . N .

0) = Ao =1—Aq. Thus,X(7) = diag(0Z ..., 02, ), with 02 # 0 or Vimap = E{W|J, Tmar} - ®)
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3.2 Incremental basis selection via a tree-structure this purpose, we generate simulated measurement vecaoord-
In this section, we review an incremental tree-structured procelld (0 (2), where the sparse vectaisare drawn from an MvC dis-

dure for selecting the next significant basis configuration, presente‘tﬁibUtLon of Ietngthgl = 48\(/)tha: t%ontairi_ _stpikes, ;Nhotsig I(;]c;?jt'i\lons
in [13], adapted to the MvC prior model. The root of the tree con-aré chosen at random. Ve Set the sparsity as a luncion '

. o= . . L = [A1-N]. In the subsequent experiments we chabse- 0.02,
sists of the zero vectdr= 0. Atthe first level, the se?; is formed, =\ ich resuits in a highly impulsive (and thus, heavy-tailed) vector
which contains theN binary vectorsT generated by “activating”  "The measurement noise is generated by drawing samples from
one mixture parameter at a time. Then, the valuep(atd) are

computed for these mixture vectors, and those withKhlargest a zero-mean MvC d'smbl_’t'o_n with underlying v arlanaﬁ_. T_h_e

values are stored it¥},;. At the second level, for each element M x N measurement matrig is constructed by first drawing i.i.d.

of 77,1, a second mixture parameter is “activated” in all possibleSaMpIes from a standard Gaussian distribution, and then normaliz-

. . . . ing its columns to unit magnitude.

locations, once at a time, resulting ¥_ (N — k) binary vectors, The reconstruction performance is tested for two distinct

which form the set7;. As before, the values gi(7,d) are com-  gjgnal-to-Noise Ratio (SNR) values (SNR=10, 15dB), as well as

puted for these mixture vectors, and those withKhiargest values  for 3 range of measurementd € {90 : 1: 12@). In particular, the

are stored m?f,g.. The Process 1S repeated unt,,,, is com- noise variances? with the mixture variances? are related via the

puted, wherdmax is the maximum number of tree levels, chosen CoEn 1

such thaPr(||T||o > Imax) is sufficiently small. expression. 2
When moving from one level of the tree to the next, the values SNR= o1 AN )

of the metricp(-) must be updated. In particular, the change results aﬁM

from the activation of a single mixture parameter at a time. For ) . .
this purpose, lef, denote the mixture vector which is identical to The Process is repeated @0 independent Monte-Carlo realiza-

7, except for tha th componert, which is “actvated i, while O80T e E A e paree vec-
it is “inactive” in T. We are interested in computing the differences q P

Dqg(T) = p(Tq,8) — p(T, d) which are then used to decide which mix- T, W, IS given by
ture components will be activated. More specifically, the.Zgf,

at thel-th tree-level is formed by keeping thé binary vectors of

the setJ that correspond to th largest values oAq(f), that is,

we maintain only these vectors which achieve the highest increase
of the basis selection metric (5). From (5), we can see that the key - ) ) . .
quantities to be updated are the invers®gt) and its determinant.  WheréWvimse  is the MMSE estimate o, given by (6), at thg-th

The update oR/(T) when theg-th component is activated, is given Monte-Carlo run. Similarly, the normalized mean-squared error of
. the MAP estimated sparse vector is given by

(13)

1 190 |\Fymsej — W3

NMS = — e
Evmse 100 2, EE ;

by
R(fq) = R(f) + oi%qq;r ’ 9 1 100 ||®MAP ) —W”Z
and thus, the matrix inversion lemma results in a simple expression NMSEyap = 100 W ;
for updating the inverse dR(Tq): =1 ¥l
R(Tg) ' =R(7) " - yy¥q¥y , (10)  wherewyapj is the MAP estimate of, given by (8), at thej-th
5 o ST 1 1o . Monte-Carlo run.
where yq = o7, (1+ 07, @ Vq) . andVq = R(T) "@. Besides, Fig. 1 shows the MMSE and MAP reconstruction errors aver-
from (9) the determinant dR.(T) can be easily updated as follows: aged over thd00runs for SNR=10, 15dB. It is clear that the pro-
2 posed algorithm, based on a heavy-tailed distribution, achieves a

better reconstruction performance, when compared with the FBMP
method, which is based on a normality assumption with respect to
. . the prior distributions. For both methods, the corresponding MMSE
Notice also that the updated mean veqiry) (and consequently, and MAP estimates are close to each other. Also, the SNR level af-
Fig(Tq)) is the same af(T) (Lig(T)) except for a change of igrth  fects more the FBMP method. Besides, it seems that the number of
component fromug = i = 010 g = 3. Finally, the probability ~measurements does not affect the performance in the present highly

of 7 is updated asp(Tq) = j\‘—; p(7). The substitution of this update impulsive scenario.

equations in (5), and after some manipulation, results in the follow- _ Fig- 2 shows the average number of non-zero taps contained
ing expression foAq(7) corresponding to the MvC prior model: in the most significant basis configurations for both methods. Our
9 ' proposed method results in a decreased number of activated taps.

R(T)| = (1+ 02 @ R(D) L) R(D)] = 07;‘*|R<f>| . ay

S 1I Yq | A1, M+1 On the other hand, Fig. 3 shows the average number of vectors
Dq(T) = P n[g] + n[)To] T contained in the se?;, ., consisting of the most significant ba-
q

. sis configurations (mixture vectors). Our method exploits a smaller
Yaldg(T) Vg + (p1/02) 2 — (u2/02) number of such configurations, while for a smaller SNR both meth-

(l [1- 5>— < 4 ]) ods require more mixture vectors to capture the impulsive behavior.

1+ 4g(T) TR(T) ~24g(T) In order to make the comparison of the sparsity performance of the

(12)  two methods more meaningful, we define the following sparsity ra-

- tio

where{q(T) = d— [ig(T). Due to our assumption that in the present o )

study the mixture vectors consist of two components, the variancesSpr (# non-zero tapsy (# significant mixture vectors) (14)

02 in (12) can be substituted liy?. M :

The lower the value oEpR for a fixedM, the sparser the solution
4. EXPERIMENTAL RESULTS of the corresponding method.
In this section, we compare the performance of the proposed recon- Fig. 4 shows the SpR ratio for the two methods and for the two

struction scheme with the FBMP method proposed in{13for ~ SNRvalues. As it can be seen, for the same number of CS measure-
ments, the SpR ratio of the proposed method is much smaller than

2We used the FBMP package downloaded frotip://www.ece.
osu.edu/"zinielj/fbmp , using the standard implementation without parameter re-estimation.
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Figure 1. Average MMSE and MAP reconstruction errors, of theFigure 3: Average number of significant mixture vectors, as a func-
FBMP and MvC methods, as a function of M, for SNE3-15dB. tion of M, of the FBMP and MvC methods, for SNR=10, 15dB.
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Figure 2: Average number of non-zero taps, as a function of M, ofigure 4. SpR ratio, as a function of M, of the FBMP and MvC
the FBMP and MvC methods, for SNRS, 15dB. methods, for SNR=10, 15dB.

the SpR ratio of the FBMP approach, which means that our procpns_trut_:ted by first drawing ||d s_amples from astandard (_Baussian
posed method results in a sparser solution. The fact that the valhistribution, and then normalizing its columns to unit magnitude.

of SpR corresponding to the proposed method is almost constant The reconstruction performance is tested by varying the charac-
over the whole range d¥l, may be due to the fact that we do not teristic exponenta, in the interval[1, 2] with a step size 0.1, and
re-estimate the mixture parametérs, 62) during the reconstruc- fozr two SNR values, SNR; 10dB. The noise underlying variance
tion process, as it will be mentioned in section 5. This may affectO7 i Set in accordance to the mixture variarag via (13). We

the sensitivity of the proposed algorithm. also set the values of the mixing parametgysand o7 to 3 and 5,

As it was mentioned before, the degree of impulsiveness of theespectively. The process is repeated 60 independent Monte-
“signal” under consideration is controlled by the value of the char-Carlo realizations, and the results are given by averaging over the
acteristic exponentr of the sub-GaussiaBa$S distribution. Al-  100runs.
though in our proposed model we consider the multivariate Cauchy  Fig. 5 shows theNMSEyvmse and NMSEyap reconstruction
case, witha = 1, we are interested in studying the reconstructionerrors, as a function ofr, corresponding to the FBMP and MvC
performance for other values afas well, corresponding to differ- methods, for the two SNR values. First, we observe that the perfor-
ent levels of sparseness. mance of both methods is improved as the SNR increases. Besides,

For this purpose, we curry out a second set of Monte-Carlo runghe MvC approach achieves a smaller reconstruction error in com-
by generating simulated measurement vecthescording to (2), parison to the FBMP approach, for valuesmtlose to 1, that is,
where the sparse vectofsare drawn from a sub-Gaussian distri- when the actual distribution of the signal is heavy-tailed, while its
bution of lengthN = 300that contairlL spikes, whose locations are performance is comparable to the performance of the FBM®& as
chosen at random. As before, the sparsity is set as a functidn of tends to 2 (that is, to a Gaussian prior model). Thus, when the orig-
andN, L = [A1-NT, with A; = 0.03. The measurement noise is gen- inal signal is highly sparse, the MvC approach should be preferred.
erated by drawing samples from a zero-mean sub-Gaussian distri- Fig. 6 shows the SpR ratio, as a functionaffor the FBMP
bution with underlying standard deviatiary . We fix the number of and the MvC methods and for the two SNR values. As before,
measurements tdl = 90, and theM x N measurement matri® is  for the values ofa which are in the vicinity of 1, the SpR ratio
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of the proposed method is much smaller than the SpR ratio of théons (“inactive”, “active”). Besides, the parameters of these distri-
FBMP approach, which means that our proposed method results inkautions are predetermined and kept fixed during the reconstruction
much sparser solution when working in a highly impulsive environ-process. As a future work, we are interested in modifying the pro-
ment. On the other hand, as the valuexadipproaches 2 (Gaussian posed model so as to permit each mixture component to be chosen
statistics), the SpR ratio of both methods decreases, with the FBMffom a larger set of candidate mixture distributions. We will also
method, which is based on a Gaussian prior, resulting in a slightlyntroduce a technique for re-estimating their corresponding param-

sparser solution.
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Figure 5: Average MMSE and MAP reconstruction errors, of the
FBMP and MvC methods, as a function@f for SNR=8, 10dB.
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Figure 6: SpR ratio, as a function of, of the FBMP and MvC
methods, for SNRg, 10dB.

5. CONCLUSIONS AND FUTURE WORK
In this work, we described a method for CS reconstruction of a

highly impulsive vector in heavy-tailed noise, based on a Bayesian

framework. We employed a multivariate Cauchy (MvC) distribu-
tion as the prior model, and thus, modeling directly the veator
with a heavy-tailed distribution that enforces its sparsity. The exper-

imental results revealed an improved performance of the proposed

r;17]

approach when compared with the previous FBMP method. In pal
ticular, we showed that the MvC-based implementation achieves
smaller reconstruction error than the FBMP approach when the ob
served signal is truly sparse (that &,— 1), while maintaining a
quite low value of the SpR ratio, which is equivalent to an increased
sparsity.

In the present work, we made the simplified assumption that
the components of a mixture vectbare chosen from two distribu-
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eters(ui,aiz) during the reconstruction process.
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