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ABSTRACT

Recent studies reveal that if a signal is highly compressible in some
orthonormal basis, then an accurate reconstruction can be obtained
from random projections using a very small subset of the projec-
tion coefficients, and thus, reducing the complexity of the sensing
system. A Bayesian framework was introduced recently with re-
spect to the reconstruction of the original (noisy) signal, providing
some advantages when compared with reconstruction methods, em-
ploying norm-based constrained minimization approaches. These
Bayesian methods were designed by using mixtures of Gaussians to
approximate the sparsity of the prior distribution of the projection
coefficients. However, there are cases in which a signal exhibits a
highly impulsive behavior, and thus, resulting in an even sparser co-
efficient vector. In this paper, we develop a Bayesian approach for
estimating the original signal based on a set of compressed-sensing
measurements corrupted by heavy-tailed noise. The prior belief that
the vector of projection coefficients should be sparse is enforced by
fitting its prior distribution by means of a heavy-tailed multivariate
Cauchy distribution. The experimental results show that our pro-
posed method achieves an improved reconstruction performance, in
terms of a smaller reconstruction error, while increasing the sparsity
using less basis functions, compared with the recently introduced
Gaussian-based Bayesian implementation.

1. INTRODUCTION

Sampling is a key concept of signal processing because it allows
real-world signals in the continuous-domain to be acquired, rep-
resented, and processed in the discrete-domain. In many modern
applications, including digital image and video cameras, the classi-
cal Shannon/Nyquist sampling rate is so high, resulting in too many
samples, and thus, making compression a necessity prior to storage
or transmission. Several works [1, 2, 3] have shown that many natu-
ral signals result in a highly compact (sparse) representation, when
they are projected on orthonormal basis functions (e.g.,wavelets and
sinusoids). The traditional approach to compressing such a sparse
signal is to compute its transform coefficients and then store or
transmit only a small number of large amplitude coefficients.

Compressed Sensing (CS) is a new framework introduced re-
cently for simultaneous sensing and compression [4, 5]. CS enables
a potentially significant reduction in the sampling and computation
costs at a sensor with limited capabilities. According to the CS
framework, a signal having a sparse representation in a transform
basis can be reconstructed from a small set of projections onto a
second, measurement basis that is incoherent with the first one.

Let Ψ be aN×N matrix, whose columns correspond to the
transform basis functions. Then, a given signal~f ∈ RN can be rep-
resented as~f = Ψ~w, where~w∈ RN is the weight vector. As men-
tioned above, for many signals~f present in nature, the majority of
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the components of~w have negligible amplitude. In particular, a sig-
nal ~f is L-sparse in basisΨ if the corresponding weight vector~w
hasL non-zero components (L ¿ N). In a real-world scenario~f
is not strictlyL-sparse, but it is said to becompressiblewhen the
re-ordered components of~w decay at a power-law.

Consider also anM×N measurement matrixΦ, M < N, where
the rows ofΦ are incoherent with the columns ofΨ. For example,
let Φ contain independent and identically distributed (i.i.d.) Gaus-
sian entries. Such a matrix is incoherent with any fixed transform
matrixΨ with high probability (universality property) [5].

If the signal~f is compressible inΨ, then, it is possible to per-
form directly a set of compressed sensing (CS) measurements~g,
through random projections. That is, them-th CS measurement,
~gm, results by projecting~f onto a random linear combination of
the basis functions,~gm = ~f T(Ψ~φm) , where~φm ∈ RN is a ran-
dom vector with i.i.d. components. The CS measurements can be
written in the following compact form,~g = ΦΨT~f = Φ~w , where
Φ = [~φ1, . . . ,~φM ]T . Thus, the problem of reconstructing the original
signal~f from the CS measurements~g, is equivalent to estimating
the (sparse) weight vector~w.1

Most of the recent literature on CS [6, 7] has concentrated on
constrained optimization-based methods for signal reconstruction.
For instance, thè1-norm minimization approach seeks a sparse
weight vector~w by solving the following linear problem,

~̃w = argmin
~w
‖~w‖1 , s.t. ~g = Φ~w . (1)

The main approaches for the solution of such an optimization prob-
lem include linear programming [8] and greedy algorithms [9], re-
sulting in apoint estimateof the weight vector~w.

In recent studies [10, 11, 12, 13], the inversion of CS measure-
ments was considered from a probabilistic/Bayesian perspective. In
particular, given a prior belief that the weight vector~w should be
sparse and the set of CS measurements~g (observables), the objec-
tive is to formulate aposterior probability distributionfor ~w. This
approach improves the accuracy over point-estimate methods and
provides confidence intervals (error bars) in the approximation of
~f . For computational purposes, and in order to get closed-form
expressions, current Bayesian techniques employ the multivariate
Gaussian distribution as the prior probability model.

In the present work, the estimation of~w is also performed in
a Bayesian framework. However, there are many cases in which
a signal exhibits a highly impulsive behavior, resulting in an even
sparser coefficient vector~w. In contrast to previous studies, our pro-
posed method consists of modeling the prior probability of~w with
a heavy-tailed distribution, which promotes the sparsity of~w. This
is motivated by the fact that a heavy-tailed density function is suit-
able for modeling highly impulsive signals. In particular, in our
case,~w can be considered as a highly impulsive “signal” since it

1Obviously,~f and~w are equivalent representations of the signal, with~f
being in the time (or space) domain and~w in the (transform)Ψ domain.
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is characterized by a large number of small-amplitude components
and a small number of large-amplitude components. For this pur-
pose, a multivariate Cauchy distribution (which is a member of the
so-called sub-Gaussian family) is employed to model the heavy-
tailed behavior of~w, as well as the noise corrupting the projection
coefficients, since it models efficiently highly impulsive environ-
ments [14, 15] and also it yields closed form expressions in the sub-
sequent Bayesian inference.

The rest of the paper is organized as follows: in Section 2, the
heavy-tailed statistical signal model is described briefly. In Sec-
tion 3, the CS inversion process for the estimation of the weight
vector~w is analyzed in detail. In Section 4, the performance of
the proposed method is compared with the original Bayesian CS
method first introduced in [13]. Finally, in Section 5 conclusions
are drawn, together with directions for future work.

2. STATISTICAL SIGNAL MODEL

As mentioned in the previous section, the representation of the
time-domain signal~f , is equivalent to its representation~w in the
frequency-domain (for instance,~w may contain the wavelet coeffi-
cients of~f ). Thus, without loss of generality, in the following study
we consider that the noisy CS measurements are acquired in the
transform domain, using the model:

~g = Φ~w+~η , (2)

where the measurement matrixΦ is described in Section 1, and~η is
the associated noise component. Assuming that matrixΦ is known,
the quantities to be estimated, given the CS measurements~g, are the
sparse weight vector~w and the noise underlying varianceσ2

η . In this
work, the assumption that~w and~η are highly sparse is formalized
by modeling their prior distribution using a member of the so-called
sub-Gaussian Symmetricα-Stable (SαS) family [16, 17]:

Definition 1 A vector~w is called a sub-GaussianSαSrandom vec-
tor (in RN), with underlying Gaussian vector~G, iff it can be written
as~w= A1/2 ~G, whereA is a positiveα

2 -stable random variable with

parametersA∼Sα/2
(
(cosπα

4 )2/α ,1,0
)

and~G= [G1,G2, . . . ,GN]T

is a zero-mean Gaussian random vector, independent ofA, with co-
variance matrixΣ.

A multivariate sub-Gaussian distribution, with underlying covari-
ance matrixΣ and location parameter~µ , is often denoted byα-
SG(~µ,Σ), where the parameterα is the characteristic exponent,
controlling the heaviness of the tails of the marginal sub-Gaussian
distributions. The multivariate Cauchy distribution (MvC) isα-
SG(~µ,Σ) for α = 1, and its density function is given by:

p(~x) =
Γ
(N+1

2

)

π(N+1)/2
|Σ|− 1

2
[
1+(~x−~µ)TΣ−1(~x−~µ)

]− (N+1)
2 , (3)

whereΓ(·) is the Gamma function and| · | denotes the matrix deter-
minant.

In (2) we consider that~w ∼ 1-SG(~µ,Σ), where Σ =
diag(σ2

1 , . . . ,σ2
N) and~η ∼ 1-SG(~0,σ2

ηIM×M), where~0 is a M×1
zero vector andIM×M the identity matrix. The stability property
states that the sum of two sub-Gaussian (and consequently two
multivariate Cauchy) distributions with the sameα, is again sub-
Gaussian (multivariate Cauchy). Thus, the measurement vector~g∼
1-SG(~µg = Φ~µ ,R := ΦΣΦT +σ2

ηI).
From the above, the multivariate Cauchy distribution can be

viewed as a mixture of Gaussians scaled by aSαS r.v. A1/2, where
Σ, and thus,R, are determined by a discrete random vector~τ =
[τ0, . . . ,τN−1]T of mixture parameters. In the following, we will
denote the matrices byΣ(~τ),R(~τ). For simplicity (as in [13]), we
assume that~τ ∼Bernoulli(λ1), that is,Pr(τi = 1) = λ1 andPr(τi =
0) = λ0 = 1−λ1. Thus,Σ(~τ) = diag(σ2

τ1
, . . . ,σ2

τN
), with σ2

τi
6= 0 or

σ2
τi

= 0 depending on whether thei-th component is significant and
activated in the mixture or not. In the general case, the Gaussian
part of each mixture component may be chosen from a set ofΩ
Gaussians, withµτi ∈ {µω}Ω

ω=1 andσ2
τi
∈ {σ2

ω}Ω
ω=1. In the present

study, we consider for simplicity thatσ2
τi
∈ {σ2

0 ,σ2
1}, whereσ2

0 = 0
to enforce sparsity, andµτi ∈ {0,µ1}.

3. ESTIMATE A SPARSE VECTOR VIA AN MVC PRIOR

In this section, we describe the process for reconstructing the sparse
vector~w from the CS measurements~g. Following the above anal-
ysis, this process is reduced to finding the (sparse) set of the most
probable basis configurations (columns ofΦ) associated with the
activated mixture components. Then, their corresponding posterior
probabilities are employed to obtain a Minimum Mean Squared Er-
ror (MMSE), as well as a Maximum A Posteriori (MAP) estimate
of the sparse vector~w.

The posterior probability of a given~τ ′ is given by Bayes’ rule:

p(~τ ′|~g) =
p(~g|~τ ′)p(~τ ′)

∑~τ∈T p(~g|~τ)p(~τ)
, (4)

whereT = {0,1}N contains the2N possible basis configurations.
Let T∫ be the subset ofT containing the vectors~τ with the most
significantposterior probabilities. We expect that the size ofT∫ will
be much smaller than the size ofT and thus, the{p(~τ ′|~g)}~τ ′∈T∫ can
be estimated from{p(~g|~τ ′)p(~τ ′)}~τ ′∈T∫ .

The basis selection metric, for the MvC prior model, which is
used to decide whether to include a given~τ in T∫ , or not, is defined
as follows:

ρ(~τ,~g) = ln[p(~g|~τ)p(~τ)] = ln[p(~g|~τ)]+ ln[p(~τ)]

= ln
[Γ

(
(M +1)/2

)

π(M+1)/2

]
− 1

2
ln

[|R(~τ)|]

− M +1
2

ln
[
1+(~g−~µg)TR(~τ)−1(~g−~µg)

]
+

N−1

∑
i=0

ln[λτi ] ,

(5)

where
N−1

∑
i=0

ln[λτi ] = ‖~τ‖0 ln
[
λ1/λ0

]
+N ln[λ0] ,

and‖~τ‖0 is equal to the number of non-zero (“activated”) compo-
nents of~τ.

3.1 MMSE and MAP estimate of~w

A computationally feasible approximation of the MMSE estimate
of ~w, using only the most significant posterior probabilities, is given
by:

~̂wMMSE , ∑
~τ∈T∫

p(~τ|~g)E{~w|~g,~τ} , (6)

where for the approximation ofE{~w|~g,~τ} we use the underlying
Gaussian part of the 1-SG(~µg,R) distribution, resulting in the ex-
pression:

E{~w|~g,~τ}=~µ +Σ(~τ)ΦTR(~τ)−1(~g−~µg) . (7)

On the other hand, the MAP basis configuration is given by~τMAP =
argmax~τ∈T∫ p(~τ|~g), resulting in the following approximation of the
MAP estimate of~w:

~̂wMAP , E{~w|~g,~τMAP} . (8)
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3.2 Incremental basis selection via a tree-structure

In this section, we review an incremental tree-structured proce-
dure for selecting the next significant basis configuration, presented
in [13], adapted to the MvC prior model. The root of the tree con-
sists of the zero vector~τ =~0. At the first level, the setT1 is formed,
which contains theN binary vectors~τ generated by “activating”
one mixture parameter at a time. Then, the values ofρ(~τ,~g) are
computed for these mixture vectors, and those with theK largest
values are stored inT∫ ,1. At the second level, for each element
of T∫ ,1, a second mixture parameter is “activated” in all possible
locations, once at a time, resulting in∑K

k=1(N− k) binary vectors,
which form the setT2. As before, the values ofρ(~τ ,~g) are com-
puted for these mixture vectors, and those with theK largest values
are stored inT∫ ,2. The process is repeated untilT∫ ,lmax

is com-
puted, wherelmax is the maximum number of tree levels, chosen
such thatPr(‖~τ‖0 > lmax) is sufficiently small.

When moving from one level of the tree to the next, the values
of the metricρ(·) must be updated. In particular, the change results
from the activation of a single mixture parameter at a time. For
this purpose, let~τq denote the mixture vector which is identical to
~τ, except for theq-th component, which is “activated” in~τq, while
it is “inactive” in~τ . We are interested in computing the differences
∆q(~τ)= ρ(~τq,~g)−ρ(~τ,~g) which are then used to decide which mix-
ture components will be activated. More specifically, the setT∫ ,l ,
at thel -th tree-level is formed by keeping theK binary vectors of
the setTl that correspond to theK largest values of∆q(~τ), that is,
we maintain only these vectors which achieve the highest increase
of the basis selection metric (5). From (5), we can see that the key
quantities to be updated are the inverse ofR(~τ) and its determinant.
The update ofR(~τ) when theq-th component is activated, is given
by:

R(~τq) = R(~τ)+σ2
τq

~φq~φT
q , (9)

and thus, the matrix inversion lemma results in a simple expression
for updating the inverse ofR(~τq):

R(~τq)−1 = R(~τ)−1− γq~vq~v
T
q , (10)

where γq = σ2
τq

(1+ σ2
τq

~φT
q~vq)−1, and~vq = R(~τ)−1~φq. Besides,

from (9) the determinant ofR(~τ) can be easily updated as follows:

|R(~τq)|= (1+σ2
τq

~φT
q R(~τ)−1~φq)|R(~τ)|=

σ2
τq

γq
|R(~τ)| . (11)

Notice also that the updated mean vector~µ(~τq) (and consequently,
~µg(~τq)) is the same as~µ(~τ) (~µg(~τ)) except for a change of itsq-th
component fromµq = µ0 = 0 to µq = µ1. Finally, the probability

of~τ is updated as:p(~τq) = λ1
λ0

p(~τ). The substitution of this update
equations in (5), and after some manipulation, results in the follow-
ing expression for∆q(~τ) corresponding to the MvC prior model:

∆q(~τ) =
1
2

ln
[ γq

σ2
τq

]
+ ln

[λ1

λ0

]− M +1
2

·

·
(

ln
[
1−

γq|~ζg(~τ)T~vq +(µ1/σ2
τq

)|2− (µ2
1/σ2

τq
)

1+~ζg(~τ)TR(~τ)−1~ζg(~τ)

])

(12)

where~ζg(~τ) =~g−~µg(~τ). Due to our assumption that in the present
study the mixture vectors consist of two components, the variances
σ2

τq
in (12) can be substituted byσ2

1 .

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed recon-
struction scheme with the FBMP method proposed in [13]2. For

2We used the FBMP package downloaded fromhttp://www.ece.
osu.edu/˜zinielj/fbmp , using the standard implementation without

this purpose, we generate simulated measurement vectors~g accord-
ing to (2), where the sparse vectors~w are drawn from an MvC dis-
tribution of lengthN = 400 that containL spikes, whose locations
are chosen at random. We set the sparsity as a function ofλ1 andN,
L = dλ1 ·Ne. In the subsequent experiments we chooseλ1 = 0.02,
which results in a highly impulsive (and thus, heavy-tailed) vector
~w. The measurement noise is generated by drawing samples from
a zero-mean MvC distribution with underlying varianceσ2

η . The
M×N measurement matrixΦ is constructed by first drawing i.i.d.
samples from a standard Gaussian distribution, and then normaliz-
ing its columns to unit magnitude.

The reconstruction performance is tested for two distinct
Signal-to-Noise Ratio (SNR) values (SNR=10, 15dB), as well as
for a range of measurements (M ∈ {90 : 1 : 120}). In particular, the
noise varianceσ2

η with the mixture varianceσ2
1 are related via the

expression:

SNR=
σ2

1 λ1N

σ2
η M

. (13)

The process is repeated for100 independent Monte-Carlo realiza-
tions, and the results are given by averaging over the100runs. The
normalized mean-squared error of the MMSE estimated sparse vec-
tor, ~̂w, is given by

NMSEMMSE =
1

100

100

∑
j=1

‖~̂wMMSE,j −~w‖2
2

‖~w‖2
2

,

where~̂wMMSE,j is the MMSE estimate of~w, given by (6), at thej-th
Monte-Carlo run. Similarly, the normalized mean-squared error of
the MAP estimated sparse vector is given by

NMSEMAP =
1

100

100

∑
j=1

‖~̂wMAP,j −~w‖2
2

‖~w‖2
2

,

where~̂wMAP,j is the MAP estimate of~w, given by (8), at thej-th
Monte-Carlo run.

Fig. 1 shows the MMSE and MAP reconstruction errors aver-
aged over the100runs for SNR=10, 15dB. It is clear that the pro-
posed algorithm, based on a heavy-tailed distribution, achieves a
better reconstruction performance, when compared with the FBMP
method, which is based on a normality assumption with respect to
the prior distributions. For both methods, the corresponding MMSE
and MAP estimates are close to each other. Also, the SNR level af-
fects more the FBMP method. Besides, it seems that the number of
measurements does not affect the performance in the present highly
impulsive scenario.

Fig. 2 shows the average number of non-zero taps contained
in the most significant basis configurations for both methods. Our
proposed method results in a decreased number of activated taps.
On the other hand, Fig. 3 shows the average number of vectors
contained in the setT∫ ,lmax

, consisting of the most significant ba-
sis configurations (mixture vectors). Our method exploits a smaller
number of such configurations, while for a smaller SNR both meth-
ods require more mixture vectors to capture the impulsive behavior.
In order to make the comparison of the sparsity performance of the
two methods more meaningful, we define the following sparsity ra-
tio

SpR=
(# non-zero taps)× (# significant mixture vectors)

M
. (14)

The lower the value ofSpR, for a fixedM, the sparser the solution
of the corresponding method.

Fig. 4 shows the SpR ratio for the two methods and for the two
SNR values. As it can be seen, for the same number of CS measure-
ments, the SpR ratio of the proposed method is much smaller than

parameter re-estimation.
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Figure 1: Average MMSE and MAP reconstruction errors, of the
FBMP and MvC methods, as a function of M, for SNR=10, 15dB.
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Figure 2: Average number of non-zero taps, as a function of M, of
the FBMP and MvC methods, for SNR=10, 15dB.

the SpR ratio of the FBMP approach, which means that our pro-
posed method results in a sparser solution. The fact that the value
of SpR corresponding to the proposed method is almost constant
over the whole range ofM, may be due to the fact that we do not
re-estimate the mixture parameters(µi ,σ2

i ) during the reconstruc-
tion process, as it will be mentioned in section 5. This may affect
the sensitivity of the proposed algorithm.

As it was mentioned before, the degree of impulsiveness of the
“signal” under consideration is controlled by the value of the char-
acteristic exponentα of the sub-GaussianSαS distribution. Al-
though in our proposed model we consider the multivariate Cauchy
case, withα = 1, we are interested in studying the reconstruction
performance for other values ofα as well, corresponding to differ-
ent levels of sparseness.

For this purpose, we curry out a second set of Monte-Carlo runs
by generating simulated measurement vectors~g according to (2),
where the sparse vectors~w are drawn from a sub-Gaussian distri-
bution of lengthN = 300that containL spikes, whose locations are
chosen at random. As before, the sparsity is set as a function ofλ1
andN, L = dλ1 ·Ne, with λ1 = 0.03. The measurement noise is gen-
erated by drawing samples from a zero-mean sub-Gaussian distri-
bution with underlying standard deviationση . We fix the number of
measurements toM = 90, and theM×N measurement matrixΦ is
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Figure 3: Average number of significant mixture vectors, as a func-
tion of M, of the FBMP and MvC methods, for SNR=10, 15dB.

90 95 100 105 110 115 120
0

1

2

3

4

5

6

7

8

Number of measurements [M]

S
pR

 

 
MvC (15dB)
MvC (10dB)
FBMP (15dB)
FBMP (10dB)

Figure 4: SpR ratio, as a function of M, of the FBMP and MvC
methods, for SNR=10, 15dB.

constructed by first drawing i.i.d. samples from a standard Gaussian
distribution, and then normalizing its columns to unit magnitude.

The reconstruction performance is tested by varying the charac-
teristic exponent,α, in the interval[1,2] with a step size of0.1, and
for two SNR values, SNR=8, 10dB. The noise underlying variance
σ2

η is set in accordance to the mixture varianceσ2
1 via (13). We

also set the values of the mixing parametersµ1 andσ2
1 to 3 and 5,

respectively. The process is repeated for100 independent Monte-
Carlo realizations, and the results are given by averaging over the
100runs.

Fig. 5 shows theNMSEMMSE and NMSEMAP reconstruction
errors, as a function ofα, corresponding to the FBMP and MvC
methods, for the two SNR values. First, we observe that the perfor-
mance of both methods is improved as the SNR increases. Besides,
the MvC approach achieves a smaller reconstruction error in com-
parison to the FBMP approach, for values ofα close to 1, that is,
when the actual distribution of the signal is heavy-tailed, while its
performance is comparable to the performance of the FBMP asα
tends to 2 (that is, to a Gaussian prior model). Thus, when the orig-
inal signal is highly sparse, the MvC approach should be preferred.

Fig. 6 shows the SpR ratio, as a function ofα, for the FBMP
and the MvC methods and for the two SNR values. As before,
for the values ofα which are in the vicinity of 1, the SpR ratio
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of the proposed method is much smaller than the SpR ratio of the
FBMP approach, which means that our proposed method results in a
much sparser solution when working in a highly impulsive environ-
ment. On the other hand, as the value ofα approaches 2 (Gaussian
statistics), the SpR ratio of both methods decreases, with the FBMP
method, which is based on a Gaussian prior, resulting in a slightly
sparser solution.
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Figure 5: Average MMSE and MAP reconstruction errors, of the
FBMP and MvC methods, as a function ofα, for SNR=8, 10dB.
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Figure 6: SpR ratio, as a function ofα, of the FBMP and MvC
methods, for SNR=8, 10dB.

5. CONCLUSIONS AND FUTURE WORK

In this work, we described a method for CS reconstruction of a
highly impulsive vector in heavy-tailed noise, based on a Bayesian
framework. We employed a multivariate Cauchy (MvC) distribu-
tion as the prior model, and thus, modeling directly the vector~w
with a heavy-tailed distribution that enforces its sparsity. The exper-
imental results revealed an improved performance of the proposed
approach when compared with the previous FBMP method. In par-
ticular, we showed that the MvC-based implementation achieves a
smaller reconstruction error than the FBMP approach when the ob-
served signal is truly sparse (that is,α → 1), while maintaining a
quite low value of the SpR ratio, which is equivalent to an increased
sparsity.

In the present work, we made the simplified assumption that
the components of a mixture vector~τ are chosen from two distribu-

tions (“inactive”, “active”). Besides, the parameters of these distri-
butions are predetermined and kept fixed during the reconstruction
process. As a future work, we are interested in modifying the pro-
posed model so as to permit each mixture component to be chosen
from a larger set of candidate mixture distributions. We will also
introduce a technique for re-estimating their corresponding param-
eters(µi ,σ2

i ) during the reconstruction process.
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