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ABSTRACT of these methods is that the selected pixels are directly con

We address the problem of complexity reduction in hyper_sidered as pure sources, which is not always a valid assump-

spectral image unmixing. When the hyperspectral imagelio" In practice. In [8], the independent component analy-
aFr)e highly regoluted, wegpropose to selggt a IFi)mited num% is (ICA) was used to yield a rough classification of pixels,
of pixels, therefore reducing dramatically the size of thtad and then to design a heuristic selection procedure. This pro

Then, the related mixtures are used as inputs to a positi\fﬁedure av;)hlds to s;lectfp|x|elst bctjalo.ngllng to %(Elfa(;l'[ reﬁé)on
source separation algorithm. Our pixel selection prooedur owever, (€ number of Selected pIXels IS arbitrarily Close

is based on a convex cone analysis of the data mixtures; ifdd the positivity assumption is not taken into account.
The algorithm proposed in this paper aims at selecting

deed, positive mixtures of sources are embedded in a conve : :
cone whose boundary contains complete available inform _)Igfectlvely the relevant pixels, based on the CCA framework

tion regarding the sources. We search for the least numb |he main idea in CCA is that each non-negative mixture of
of mixtures embedding the convex cone and then store t purces Iays inside the.conve.x cone sp_anned by 'ghe sources.
corresponding pixel indices as the selected pixels. Weyappldhetpbltehcuve of CCA is tt)o f'néj thecr:‘nlxiurestwh;ch fu"é
this method to the analysis of hyperspectral images of bacs etn If%lth € convex cotr;]e “lg)un gry. .OT rary cl) [t]’ vslvgtho
terial cells obtained on a confocal microscope. The baateri 0! S€! th€ SOUrces as the “boundary mixtures:. insteasetne
cells, acting as whole-cell biosensors, display greatrizte selected mixtures are used as the input of a positive source

as living transducers in sensing applications. separation_ procedure. . .
9 gapp In Section 2, we state the positive source separation prob-

lem and we discuss the complexity reduction issues. In Sec-
1. INTRODUCTION tion 3, we introduce the CCA framework and we present our

Blind positive source separation (PSS) is known to be a diffiPixel selection algorithm. In Section 4, we apply this metho
cult, ill-posed inverse problem, because the positivitgath ~ t0 the analysis of hyperspectral images obtained on a con-
source signals and mixture coefficients is not sufficient tgocal microscope, which characterize genetically engieete
guarantee a unique solution. In the last decade, intensiRacteria expressing optically active reporter molecuige+
efforts were made to study the identifiability of the sourceSPOnse to chemical or environmental effectors [9].
separation problem under the positivity constraints, dnd e
ficient algorithms were proposed. The algorithms either use ~ 2- POSITIVE SOURCE SEPARATION AND
the positivity assumptions only [1, 2] or use additional con COMPLEXITY REDUCTION ISSUES
straints to force the solution to be unique [3, 4]. 2.1 Positive source separation

In imaging applications, the number of mixtures corre- . .
sponds to the number of pixels. For highly resoluted imagedn SOUrce separation problems, the observations are gtoupe
this number can typically reach 532Most positive source together in a matrixX’ = [z1,...,zv]" of sizeM XNN rep-
separation algorithms cannot be applied to such voluminoud§senting a collection ofl mixture signalsz; € R™. The
data sets because they require a considerable amount of tifigear instantaneous mixture model expresses each mixture
and/or memory. Therefore, it is necessary to reduce the dat as a linear combination ¢ source signalsy, ..., sp:
sets,e.g.,by considering a limited number of pixels. P

There exists a rich literature on pixel selection but we T = Z aij sj. (1)
will only refer to the approaches similar to that proposed in =1
this paper. One of the most popular algorithms for pixel se- _ _
lection is Pixel Purity Index(PPI) proposed by Boardman !N the matrix form, this model rereads:
in [5]. PPl is based on the repeated projection of the mix- X = AS, )
tures onto random unit vectors, and the search for the ex-
treme pixels in each projection. From a cumulative accounivhere A is the mixing matrix, of sizeM x P, whosei-th
recording the number of times each pixel is found to be exrow gathers the weight of all sources in the mixtufe and
treme, PPI identifies the mixtures which are more likely to beS = [sy, ..., sp! is the source matrix, of siz@ x N.
the pure sources [5, 6]. In [7], the eigenvectors of the spec- Given a set of observation¥ = [x1,...,zm]', the blind
tral correlation matrix are used to estimate the sourcdhgin  source separation problem consists in decompoXngc-
convex cone analysis (CCA) framework. The main drawbackording to (2). In the followingP will be assumed to be the
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rank of X, and we will assume that and.S are full rank,
i.e.,rank[A] = rank[S] =P.
For noisy data, model (2) is replaced by:

X =AS+N, 3

where the noise matri®v takes account of the modeling and
the measurement errors. The blind source separatiod of
consists in searching for the factorizati&h=~ A.S for which
the residual betweeX and A.S is minimal. In this paper,
we impose thatd and S are non-negative matriceise., all
elementsy; ands;j are non-negative.

2.2 Unicity issues and regularization

Let us start by considering the noiseless problem and the non
negativity constraint. This constraint is known to regizar
the source separation problem, because it restricts tlgeran
of solutions for (2). However, it does not always guarantee
the unicity of the decomposition [10, 11] (unicity is defined
up to a permutation and scaling of the sources; if there is
no other ambiguity, the decomposition is called “unique”).Figure 1: Pixel selection procedure: illustration for= P =
Typically, the non-negative matrix factorization alghrit[2] 3. A mixture signalx; is a vector ofR2 (+). Graphically,
provides one exact solution among all the possible solstionthe affine projectiony; of «; is defined as the intersection of
satisfyingA > 0 and S > 0. Often, additional constraints |ine (0, ;) with the plane of equatiox(1) +x(2) +x(3) = 1.
must be imposede.g., the sparsity of the source samples The projectiony; is represented with a bulle¢, The pixel
and/or of their weights in the mixtures in order to uniquelyselection procedure consists in projecting all the datand
identify the sources [3,4]. However, there exists a (rathethen computing théN — 1)-dimensional convex hull of the
technical) necessary and sufficient condition, based on thget of pointsy;. WhenN = 3, this convex hull is the 2D
positive span of the mixtures;, under which the identifia- polygon represented in plain line.

bility of (2) is guaranteed with the only non-negativity eon

straint [10, 11]. Let us first define the notion of positiverspa

. N ) In this equation X is of sizemx N with m<« M, A is of
Definition. The positive spanof a family of vectors sizemx P andS remains of sizé® x N.
{z1,...,za} isthe set vect(zy,...,zq) = {z =3, iz, 0 € The key issue is to keep the available information regard-
R}, whereR,. denotes the set of non-negative reals. ing the sources. This can be done by searching for the bound-
ary of the convex cone vectX) (also called theconical
hull), which fully describes the “extreme” mixturas. Se-
lecting the pixels such thatz; lays on the conical hull also
facilitates the further source separation (4) becauseitiee s
of the data is significantly reduced.

In the following, we will denote by ve¢X') and vect (X)
the span and the positive span of the rows Xf i.e.,
x1,...,zm € RY. Shortly speaking, the condition of [10, 11]
states that vett X ') has to be “close enough” to vé& )N
IRﬂ in order to guarantee the unicity of factorization (2).

In the noisy case, we do not search for an exact factoriza-
tion of X anymore, but rather for an approximate factoriza- 3. CONVEX CONE ANALYSIS FOR PIXEL
tion in which A and S satisfy specific properties. The algo- SELECTION
rithms which jointly estimated and.S from noisy data often . ] ] .
rely on prior assumptions on the sources and/or the mixtur this section, we present our algorithm whose goal is

coefficientsge.g.,sparsity assumptions [3, 4]. to search for the conical hull,e., the minimal family of
mixtures whose positive span is equal to the convex cone
2.3 Complexity reduction vect™(X). The selected pixels are finally the correspond-

) L , ing indices. For the sake of simplicity and for illustration
For hyperspectre}l image applicationd, is the_ number of purpose, we start by the case where: N.
pixels and the mixture; is related to the-th pixel. When
the value oM is huge (typicallyM can reach 512or more),
classical algorithms either yield poor results [1, 3] orman 3.1 Case wheré® =N
be used [4] because of their greediness in terms of memor¢iven the mixtures: zm € RN (see Fig. 1 for a repre-
storage and computation time. In all cases, it is of interes : 3 Lye-oH M & By 9. 110 P
to reduce the dimension of the da¥ by keeping a subset Sentation ofR%), the method aims at researching the con-
of the pixels{1,...,M}, for instance those for which only a ical hull vect’(X), defined as the minimal subs&fe =
limited number of sources are present. Formally, we want t&Z oy, Zo,,- - -, Tap 0f X for which vect (X) = vect” (Xe),

extract a matrixX,e from X whose number of rows is lim- With 01,...,0m € {1,...,M} andm< M.

ited, and then to unmix the new mattXe: In order to compute vet{X), we use the affine pro-
jection whose center i® onto the hyperplane of equation
Xer AeS. (4)  X(1)+4---+x(N) =1, wherex(k) refers to thek-th coordi-
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o . on the sources is available, or else, by performing a singu-
Table 1: Pixel selection procedure. lar value decomposition (SVD) of the raw da¥, and by
Input: M mixtures stored as vecto#s, ..., xy of lR,ﬁ. searching for a significant gap between each pair of consec-
Input: value ofP ~ rank[X]. utive singular values. , ,
_ — WhenP is large, the computation burden of the pixel se-
[Affine projection] lection procedure dramatically increases, because-al)-

Fori=1,...,M, dimensional convex hull computation is required. In this
Compute the affine projectioy) of z; using (5). case, we propose an adaptation, which is approximate but
End For significantly faster. It is based on the following remarke th
i convex hull of the orthogonal projections of a se{Bf- 1)-
[Dimensionality reduction from N to P — 1] dimensional vectorg; onto a given 2D space yields a num-
Perform PCA of the set d¥l pointsy; € ]le ber of indiceso;j such that for allj, yo; necessarily belongs
Compute the new coordinatese RP-1 of y; with to the convex hull of{y;,i = 1,... ,M}. Consequently, we

h . incinal propose to store the principal vectdsg related to the PCA
respect to the maiR — 1 principal vectors. of the set of pointsy;, and, repeatedly, to consider each pair
[Convex hull computation] of vectors(&,,&,) (or the main vectors only), and then to

Compute the convex hull of the points i = 1,..., M. project orthogonally the set of vectogs onto the plane de-

A fined by &, andé,. The repeated 2D convex hull compu-
Store the output pixel indices &, ..., Om € {1,...,M}. tations do not yield the exact conical hull v&¢X) but a

representative subset of pixatsapproximating vect(X).

nate ofx. The affine projectiony; of a vectorz; reads
Choice of the source separation algorithm. Once the se-
_ 1 - (5) Quence of pixelsoy,...,om € {1,...,M} is selected, we
zElei(k) ' gather them corresponding mixtures into matriXe =
[0y, Tay,- - Tay]', @and we solve (4) using a blind posi-
It is easy to see that the conical hull ve€X) is sup- tive source separation algorithm, whose execution takes a
ported by the origin0 and theconvex hullof the set of reduced time since the number of mixtures is limited. In
points {i, i = 1,...,M} which all lay in an(N —1)— di-  general, we cannot guarantee the identifiability of (4), ex-
mensional space (see figure 1). Their convex hull is thugept if the unicity conditions of [10, 11] are fulfilled. Siac
an(N — 1)— dimensional polyhedron whose vertices are deit is quite complex to compute this measure of unicity, we
noted byyag, , ..., Yay,-. In other words, we have: assume, by default, that the decomposition is not unique, an
we choose the Bayesian Positive Source Separation (BPSS)
vect' (X) = vect' (zo,,. .., Tay) = VECL (Yo - - -, Yo)- algorithm of [4], which imposes sparsity of the source sam-
o ) ) 6 ples and/or of their weights in order to restrict the range
The approachis illustrated on3F|g. 1inthe case wihere3:  of solutions to (4). This algorithm relies on Monte Carlo
the mixturese; are vectors oR} and their projectiongi lay  Markov Chain sampling of the sources and the mixture coef-
inside a common 2D affine plane. o ficients. Once the sourcé&shave been found, the remaining
In brief, the pixel selection procedure consists in com+ask is to estimate the mixture mateik (i.e., the mixture co-
puting the affine projectiop; of each vectorr;, and thenthe  efficients for thewhole M original pixels) fromX and S.
convex hull of the set of point8y;, i =1,...,M}. Inorderto  Thjs task involves the minimization of the least-squarererr

simplify the convex hull computation, and because the soint|| x — 4 5|2 with respect tad under the constraind > 0.
y; all lay inside an affine hyperplane of dimensibin- 1,

we choose to describe them [y — 1)-dimensional vectors.
This can be done in a very simple manner by processing the 4. APPLICATION TO REAL DATA

Principal Component Analysis (PCA) dfy1,...,ym} and 4.1 Imaging of bacterial sensors
by keeping théN — 1 main principal components.

Yi

The application context is the study of genetically engiade
3.2 Case where® < N bacteria expressi.ng optically active reporter molecule®+ _

. _ sponse to chemical or environmental effectors. Bacterial
Let us extend the conical hull procedure described abovee|is have the capacity to act as whole-cell biosensors and
BecauseP is assumed to be the rank df, the mixtures gisplay great potential as living transducers in sensingiap
i are vectors laying inside B-dimensional subspace of cations [9]. Most popular biosensors are produced by insert
R", thus their projections onto the affine plane of equationng into an appropriate bacterial hosffp and dsred genes
X(1)+---+X(N) = 1lay inside a P — 1)-dimensional affine  hat code for a green fluorescent protein (GFP) and a Disco-
subspace. For this reason, the strategy described above &ymga red fluorescent protein (DsRed), respectively. Becaus
mains valid, the only adaptation being to further reduce thene expression of these fluorescent proteins can be assayed i
dimension of the projected mixtures by keeping the main  jngividual cells by non-destructive means such as confocal
P — 1 principal components. The procedure is finally sumyaser scanning microscopy, engineered bacteria aretaterac
marized in Table 1. biosensors and are increasingly being employedrfaitu
. o . . studies in microbial ecology [12, 13].
3.3 Practical utilization of the pixel selection procedure In this work, a representative strain of the ubiquitous bac-
Choice of P and implementation issues. The value of terial genusPseudomonagP. putidg KT2440) was geneti-
P~ rank[X} can be chosen easily if some prior knowledgecally engineered to design a GFP-based biosengpy that
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Figure 2: Bacterial cellimaging. The real data are 16 hypeeal images of a set of genetically engineered bactsiia ¢fp
anddsr genes). The excitation beam was set to 405 nm while the eanisgjnal ranging from 450 to 610 nm was recorded
in steps of 10 nm. (&) Sum of the 16 hyperspectral images. et selected by setting the number of sourcd3 403,

are superimposed with a (red) plus.  (b) The two sources {ypé strainwt alone andgfp gene) yielded by the BPSS
algorithm @ = 2) from the 9 data mixtures. (c,d) Weights of both sourcebhéngixels, displayed as two 2D images.

responds in a dose-dependent manner to toxic metal expbacteria cells together. The pixel selection algorithnmdge
sure. The biosensor strain was also engineered to constitd-mixtures among the 52bservations (see Fig. 2 (a)).

tively express DsReddér). Immobilized bacteria cells with We first ran the BPSS algorithm with= 3 sources, but
dsrandgfpgenes were examined using a Nikon inverted mi-in output, two sources among the three were almost identical
croscope (Eclipse TE2000-U) equipped with a Biorad confoand shared similar weights. Thus, we concluded that only
cal scan head (Radiance 2100 Rainbow). Fluorescence spe@o sources are detectable from the data. Fig. 2 (b) shows
tra were acr??uired pixel by pixel (512512 pixels, of size the sources yielded by BPSS with= 2, based on the same
100x 100nnt) and sequentially (16 wavelengths) in a fo- 9 mixtures. Here, it is not worth running the pixel selection
cus plane (single cell layer). The excitation beam was proalgorithm withP = 2 as it necessarily yields only 2 mixtures.
vided by a blue laser diode (405 nm) while the emission sigWe rather consider the 9 mixtures shown on Fig. 2 (a), since
nal ranging from 450 to 610 nm was recorded in steps of 1¢he BPSS algorithm remains fast with such a limited number
nm. of entries. Both sources can be interpreted as the wild-type
(wt) and thegfp spectra, respectively, and the weight images
of Fig. 2 (c,d) show their respective response with respect t
the spatial dimensions andY.

4.2 Hyperspectral unmixing

The hyperspectral signals; are thus of size\N = 16 (.e.,
the number of wavelengths) and their numbeMis= 512°.
Each source is characterizing a “pure” componest, the
wild-type strain (vt) and thegfp anddsr genes, respectively. Although the exact expected values of the sources are not
For this reason, we first set the number of sourc&+a. In knowna priori, we can analyze and comment the source sep-
Fig. 2 (a), the image equal to the sum of the 16 hyperspectrakation results by comparing them with the spectra measured
images (in which the gray level of theth pixel is equal to by another modality of spectroscopy. We recorded average
Eﬂilx;(j)) is shown. It provides a global view of all the population spectra, referred to &asilk fluorescence spec-

4.3 Interpretation of the results
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be a piecewise constant image). An extended pixel selec-

® @ —wt (Ex 405 nm) . A . . K
T « /N e b+ (Ex405nm) tion procedure would favor the joint selection of neighhgri
glot, dort(Ex 480 nm) pixels in different zones of the space domain. In the appli-

- - - gfp+ (Ex 480 nm)

cation viewpoint, the proposed algorithm offers new insigh
in the analysis of living bacteria activities in complex env
ronments, in which the background is unpredictable and the
natural fluorescence of cells cannot be controlled. The key
difficulties include the wide spectral overlapping betwten
biosensor emissions, the variability in the cell fitness aind
viously, the impressive mass of data to compute [14].

Fluorescence Emission (A.U)
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