
REAL-TIME UNDERSTANDING OF 3D VIDEO ON AN EMBEDDED SYSTEM

Olivier Steiger Stephan Weiss Judith Felder

ABB Switzerland Inc. ETH Zürich ETH Zürich
CH-5405 Baden 5 Dättwil CH-8092 Zürich CH-8092 Zürich
olivier.steiger@ch.abb.com stephan.weiss@mavt.ethz.ch judith.felder@alumni.ethz.ch

ABSTRACT
A method is proposed for extracting semantic knowledge from 3D
video in real-time on an embedded system. The method consists
of foreground segmentation, object segmentation, temporal track-
ing and classification stages. It assigns relevant objects to differ-
ent classes (e.g., human, vehicle) and determines their spatial loca-
tion. These features are used in numerous applications including
intrusion detection, people or vehicles counting, incident detection
and activity monitoring. On a DSP-based embedded system, peo-
ple recognition and object localization have been performed at over
10 frames per second. In the process, a time-of-flight range imag-
ing camera has been used for video input. The experiments have
also shown that the method is capable of coping with partial occlu-
sion situations when different objects are located on distinct depth
planes.

1. INTRODUCTION

Video understanding denotes the extraction of information that is
meaningful to a human being (high-level or semantic knowledge)
from video. Common examples of semantic knowledge include
the kind of an object, determined by object recognition, and ob-
ject properties such as location and orientation, as well as narrative
information like scene length, motion activity, etc. In this paper,
a video understanding solution is proposed that specifically targets
real-time operation on an embedded system. In the process, 3D
video input from e.g. a stereoscopic system or time-of-flight camera
is used. With respect to 2D video, the high discriminative power of
depth information allows for robust object segmentation and track-
ing with substantially lower algorithmic complexity. Additionally,
3D images provide valuable information about the kind and real-
world location of objects.

In order to suit the particularities of embedded systems, three
issues have to be taken into account: memory usage, computational
effort and fixed point arithmetics. To limit memory usage, stored in-
formation is kept as concise as possible. Notably, compact descrip-
tors capturing salient object features are used for temporal track-
ing and classification. Also, iterative methods have been avoided
whenever feasible since they require the temporary storage of in-
terim results. The usage of compact descriptors and the avoidance
of iterative methods also help lowering computational demands. In
fact with descriptors, only a few vectors need to be processed, as
opposed to entire regions or contours with region-based or shape-
based representations [1]. At last, many embedded systems do not
comprise a floating point unit. To avoid costly software emulation,
all operations have thus been implemented using fixed-point arith-
metics. This has been appreciably simplified through the use of the
scale-invariant Mahalanobis distance metric.

The present method partly extends earlier work on 2D video
segmentation by one of the authors [2, 3]. It also benefits from
numerous publications by fellow researchers. Murakami and Wada
describe a real-time system for tracking walking people in 2D video
[4]. Their proposal relies on background subtraction within edge
images for object segmentation and on the projection of circles cen-
tered on objects for tracking. Classification is performed using a
very basic color model of the human body. Hansen et al. address
the fusion of information from intensity and depth images in or-

der to build background models for segmentation [5]. Specifically,
they use the joint distribution of intensity and depth information
in Mixture of Gaussian and kernel density estimation models. At
last, Ghobadi et al. describe a system for detection and classifi-
cation of moving objects using 3D data [6]. Object segmentation
is achieved by means of background subtraction of the range im-
age. After a training phase, support vector classification (SVM) is
applied to object features extracted through principal components
analysis (PCA). Note that the real-time ability of the solutions pro-
posed in [5, 6] has not been discussed.

Our solution goes beyond the above approaches by explicitly
exploiting depth information in order to improve video understand-
ing while preserving the real-time capability on embedded systems.
Specifically, depth allows us to perform segmentation and tracking
of multiple objects in the presence of mutual occlusions without re-
sorting to costly multilevel region-object models [2]. Also, distance
information helps us to efficiently classify objects based on their ap-
parent 3D shape and to localize them in space. Finally, the proposed
solution is not restricted to a particular kind of objects. Applications
are numerous and include intrusion detection, people or vehicles
counting, incident detection, activity monitoring, etc. The ability
to run on an embedded system further allows local processing on,
for instance, a surveillance camera. This also leads to potential sys-
tem cost reductions due to the possible use of application-tailored
hardware and to data redundancy removal at the source.

The remainder of this paper is organized as follows. In Section
2, the video understanding method is presented and its individual
stages, namely foreground segmentation, object segmentation, tem-
poral tracking and classification, are discussed. In Section 3, the
method is validated in three different applications: tracking, people
recognition and object localization. Finally, conclusions are drawn
and some future work directions are outlined in Section 4.

2. VIDEO UNDERSTANDING

The proposed video understanding method is depicted in Figure 1.
The 3D video input consists of an intensity image and of the corre-
sponding aligned depth map. These data are typically produced by
stereoscopic systems or time-of-flight range imaging cameras [7].
The system outputs are the kind of filmed objects (e.g., human, ve-
hicle, . . .) and their spatial location. These object features can be
exploited in various applications such as those discussed in the in-
troduction. Alternatively, they might be encoded using high-level
descriptors (e.g., MPEG-7) for further processing [3].

Video understanding consists of four interdependent stages.
Foreground segmentation tells apart the interesting foreground from
the background. It produces the foreground partition which defines
the areas of the frame containing relevant objects. Foreground seg-
mentation results in the classification of pixels into two classes,
namely foreground and background. However, no indications are
provided yet about the individual objects that are part of the scene.
Object segmentation therefore further subdivides the foreground
into meaningful objects to produce the object partition. In the sub-
sequent temporal tracking stage, the objects are individually fol-
lowed in the scene. Finally, classification determines the kind of
objects and their (absolute) spatial location.

Note that in our earlier work on 2D video analysis [2], a multi-

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1518

Figure 1: Block diagram of the 3D video understanding method.

level region-object model has been used to segment and track mul-
tiple and deforming objects. Here, this has been abandoned in favor
of the simpler object-only model in order to fit the particular restric-
tions of embedded systems. In fact, spatial clustering for region
segmentation requires extensive computations and the tracking of
numerous regions substantially increases memory demands. More-
over, the main advantage of the multilevel model lies in the efficient
handling of mutual occlusions. The latter can instead be achieved
by exploiting depth information as discussed in Section 2.2.

2.1 Foreground segmentation
Foreground objects are segmented out by means of background sub-
traction. This involves calculating a background model, subtracting
this model from each new frame and thresholding the result. The
Running Gaussian Average approach taken here is based on ideally
fitting a Gaussian probability density function (pdf) on the last n
pixel’s values [8]. Although more accurate methods exist, this has
been chosen to maximize speed and limit memory usage.

Specifically at each pixel location (i, j), the running average is
computed as

µn = Mµn−1 +(1−M)
(
αIn +(1−α)µn−1

)
, (1)

where In is the pixel’s current value (intensity or depth) and µn−1 is
the previous average. α is an empirical weight chosen as a trade-off
between stability and quick update. The binary value M is 1 in cor-
respondence of a foreground value, and 0 otherwise. This prevents
unduly updates of the background in the occurrence of foreground
values. The standard deviation σn is computed similarly. Then at
each frame time n, the pixel In is marked as foreground if

|In−µn|> kσn; (2)

otherwise, In will be classified as background. Here, k is a threshold
which is scaled by the local variance σn.

Background subtraction is applied separately to the intensity
image and to the depth map. Then, the two resulting foreground
masks need to be merged to produce the foreground partition Πn

f .
Mask fusion relies on a confidence measure of the depth input to se-
lect the proper foreground mask. At each pixel location, the depth
foreground mask value is retained if Cn > τc; otherwise, the in-
tensity mask value is used. The confidence threshold τc is often
selected experimentally. Depth confidence Cn at frame time n is ob-
tained differently depending on the video acquisition method. For
stereo systems, it might for instance be computed using single-view
stereo results [9]. For time-of-flight cameras, confidence is a func-
tion of the amplitude of the incident modulated signal [10].

Jointly using intensity and depth information appreciably in-
creases the robustness of foreground segmentation. In fact, the
depth map is pretty insensitive to photometric changes and there-
fore robust against illumination variations. On the other hand, depth
cannot always be determined accurately. For instance, lack of corre-
sponding points in a stereo image pair impedes disparity estimation.
Similarly, light scattering and reflections often disturb depth mea-
surements of time-of-flight cameras. In these cases, the intensity
image is used to complete the missing parts.

2.2 Object segmentation
In order to understand video at the object level, the foreground par-
tition must be further subdivided into individual objects. In the pro-
cess, each video object (VO) in the object partition should ideally
correspond to a meaningful or semantic object in the real world.
Here, objects are segmented based on their spatial disparity. That
is, objects that are disjoined in the real world are considered to be
distinct.

To recognize object disparity, two assumptions are made about
the connection between objects in the real world and their reproduc-
tion in the foreground partition. The first assumption is that discon-
nected blobs in Πn

f always originate from disparate objects in the
real world. This assumption only holds when foreground segmen-
tation defines the shape of all objects correctly. When some object
pixels are similar to the corresponding background pixels, part of
the object might be erroneously identified by a set of pixels which
is not connected to the rest of the object, thus invalidating the as-
sumption. However, such errors can often be corrected by temporal
tracking, as discussed in Section 3.2.1. The second assumption is
that disparate but mutually occluding objects result in a depth dis-
continuity at their interface.

In practice, the first assumption is taken into account by assign-
ing different object labels to each blob in the foreground partition.
The second assumption is considered by further subdividing blobs
into regions when sudden depth variations occur within the blob.
Specifically, depth-constrained region growing is iteratively applied
as follows until all foreground pixels have been labeled:
1. Select the top-left unlabeled pixel as seed point;
2. Check the neighboring pixels and add them to the region if their

depth is similar (up to a threshold τ) to the seed;
3. Repeat step 2 for each of the newly added pixels; stop if no more

pixels can be added.
The above results in the object partition Πn

o, where each video object
is identified by an individual label. To reduce noise, Πn

o is regular-
ized by eliminating small connected sets of pixels.

2.3 Temporal tracking
Labels assigned by means of object segmentation are not coherent
in time. That is, a particular real-world object is not necessarily
given the same label at different frame times. This is the purpose of
temporal tracking.

The proposed algorithm tracks the center of mass and the vari-
ances of objects. Each object i in the object partition Πn

o is repre-
sented by a descriptor that summarizes object’s features:

Φi(n) =
(
φ 1

i (n),φ 2
i (n), . . . ,φ Ki(n)

i (n)
)T

, (3)

where Ki(n) is the number of features in frame n. In our specific im-
plementation, Ki(n) = K = 9. In particular,

(
φ 1

i (n),φ 2
i (n),φ 3

i (n)
)

represents the object’s center of mass, and
(
φ 4

i (n),φ 5
i (n),φ 6

i (n)
)

its motion vector. The center of mass is determined by averaging
the spatial coordinates of all pixels belonging to the object i in Πn

o.
The motion vector is then obtained by computing the displacement
of the center of mass between the current frame and the previous
frame.

1519

(
φ 7

i (n),φ 8
i (n),φ 9

i (n)
)

represents the object’s variances along
the spatial axes. Due to the image formation process (perspective
projection [1]), apparent object dimensions along the x and y axes
scale down with distance to the camera. Therefore, the variances
φ 7

i (n), φ 8
i (n) must be normalized with the factor 1/d2, where d

denotes the mean distance between the object and the camera as
given by the depth map. Note that the use of variances instead of,
for example, spatial extension (bounding box) to describe object
shape substantially reduces the impact of outliers. These are typi-
cally caused by erroneous object segmentation.

The subsequent data association stage establishes a correspon-
dence between the objects partition in the current frame and the
objects partition in the previous frame. Specifically, the proxim-
ity between object descriptors in Πn

o and in Πn−1
o is computed by

measuring the Mahalanobis distance DM(·) in the feature space:

DM
(
Φi(n),Φ̃ j(n−1)

)
=

√√√√ K

∑
s=1

(
φ s

i (n)− φ̃ s
j (n−1)

)2

σ2
s

, (4)

where σ2
s is the variance of the sth feature over the entire feature

space. In order to account for object motion, descriptors in the pre-
vious frame are motion-compensated prior to data association:





φ̃ 1
i (n−1) = φ 1

i (n−1)+φ 4
i (n−1)

φ̃ 2
i (n−1) = φ 2

i (n−1)+φ 5
i (n−1)

φ̃ 3
i (n−1) = φ 3

i (n−1)+φ 6
i (n−1).

(5)

The value of the other features remains unchanged, so that Φ̃i(n−
1) =

(
φ̃ 1

i (n−1), . . . , φ̃ 3
i (n−1),φ 4

i (n−1), . . . ,φ K
i (n−1)

)T .
The result of the distance computation can be represented as a

distance matrix D = {DMp,q}, where each row p corresponds to
a region descriptor in frame n, and each column q corresponds to
a region descriptor in frame n− 1. The correspondence between
the p̄th region descriptor in frame n and the q̄th region descriptor in
frame n−1 is then confirmed if

dp̄,q̄ = min
q

(DMp,q) = min
p

(DMp,q). (6)

If the condition in Equation (6) is respected, the track is updated.
Otherwise, object descriptors are iteratively paired based on their
distance. At last, the track of objects in Πn

o is updated as a conse-
quence of object descriptor tracking.

2.4 Classification
Once meaningful objects have been segmented and tracked, high-
level knowledge such as the object’s kind and location can be ex-
tracted. Here, objects are classified into different kinds by means
of shape analysis. Each object’s shape is described in terms of its
apparent elongatedness Exy [1] and depth variance σ2

z :

Exy =
σ2

x
σ2

y
=

φ 7
i

φ 8
i

; σ2
z = φ 9

i . (7)

Although a variety of more robust contour-based and region-based
shape descriptors exist [1], elongatedness and depth variance have
the advantage of directly arising from temporal tracking. Therefore,
only minimal additional computations are needed for their extrac-
tion. To classify the objects into different kinds, all shape descriptor
pairs are then compared with reference descriptions that are stored
in an object model database. In the process, the Mahalanobis dis-
tance is used to do the matching: each object is classified into the
category (kind) to whose description it has the shortest distance. If
the distance to all reference descriptions is longer than a preset clas-
sification threshold, the object remains unclassified.

Another useful information is the spatial location of objects.
When both the intrinsic and the extrinsic parameters of the cam-
era(s) are known, the real-world spatial location of any scene point

Figure 2: The experimental setup comprises a 3D camera, an em-
bedded computation system and software.

can be computed as follows [1]. Let Xw = (xw,yw,zw)T express
the scene point X in the world Euclidean coordinate system. The
projected point can then be represented in the 2D image plane π
in homogeneous coordinates as ũ = (U,V,W)T , and its 2D Eu-
clidean counterpart is u = (u,v)T = (U/W,V/W)T . Under the pin-
hole camera model approximation, ũ and Xw are related by the
following expression:

zcũ = KR(Xw− t). (8)

The camera calibration matrix K collects all intrinsic parameters.
The translation vector t and rotation matrix R express the unique
relation between world and camera coordinate systems (extrinsic
parameters). Since both the location of X in the image plane, ũ,
and its depth, zc, are known, the corresponding real-world location
is obtained by solving Equation 8 for Xw.

The above procedure can notably be used to determine the real-
world location of object’s centers of mass. To do so, the scene
point X is substituted with the center of mass: u = (u,v)T =(
φ 1

i (n),φ 2
i (n)

)T and zc = φ 3
i (n). In many applications, it is suffi-

cient to determine only the relative location of objects with respect
to the camera. The world Euclidean coordinate system is then iden-
tical with the camera Euclidean coordinate system, Xw = Xc. Thus
R = I is the identity matrix and t = 0 is the null vector.

3. EXPERIMENTAL VALIDATION

The video understanding method proposed in Section 2 has been
implemented on an embedded system and validated in three differ-
ent applications: tracking, people recognition and object localiza-
tion. The results are discussed next.

3.1 Setup
The experimental setup shown in Figure 2 comprises a 3D camera,
an embedded computation system and software. The SwissRanger
SR-3000 range imaging camera uses time-of-flight (TOF) technol-
ogy [7] to produces aligned intensity and depth images with a res-
olution of 176× 144 pixels (QCIF). The rated distance resolution
is 1% of range and the typical frame rate is 25 fps. The ADSP-
BF548 EZ Kit Lite by Analog Devices features a fixed-point digital
signal processor (DSP) and a wide range of I/O peripherals, stor-
age devices and interfaces. Notably, 64 MB SDRAM and 40 GB
hard disc memory are available. The processor core is clocked at
533 MHz and provides up to 1066 MMACS performance. Also, an
LCD touch screen and a small numeric keypad serve as human in-
terfaces. The camera is connected to the computation system over
USB.

1520

(a)

(b)

(c)

(d)

(e)

Figure 3: Tracking results for the sequence Ping-pong: frames 52,
58, 63 and 65. (a) Intensity image; (b) depth map; (c) foreground
partition; (d) object partition; (e) labeled object partition superim-
posed on intensity image. Each label is represented by a distinct
color.

The application software has been written in ANSI-C and runs
on top of the uClinux operating system. The code handles the
graphical user interface (GUI), video understanding and data trans-
fers over USB. The following empirical parameter settings have
been used in all experiments: foreground update weight α = 0.05,
local variance threshold k = 3, depth confidence threshold τc = 0.6,
object segmentation threshold τ = 0.3 meter.

3.2 Results
In this section, results and the computational performance of the
proposed method are discussed.

3.2.1 Tracking

Object segmentation and tracking have been evaluated with two dif-
ferent test sequences: Ping-pong and Occlusion. The first sequence
represents two people playing with a ball; the second sequence dis-
plays a person passing behind another person. Four sample frames
from Ping-pong and the corresponding foreground partition, object
partition and labeled object partition are depicted in Figure 3. This
sequence illustrates several strengths and weaknesses of the pro-
posed approach. In Figure 3 (c)-(e) one realizes that, up to some
noise, the shape of all objects is well segmented. Also both peo-
ple are tracked reliably. In frame 52, the ball and the right person
belong to the same blob in the foreground partition. Since they are
also both located at the same distance from the camera, the two ob-
jects cannot be differentiated based upon their depth. Therefore,
they are given the same label in the object partition. In frame 58,
the ball is now separate from both people. Thus, a new object track

(a)

(b)

(c)

Figure 4: Tracking results for the sequence Occlusion: frames 95,
107, 114 and 118. (a) Intensity image; (b) depth map; (c) labeled
object partition superimposed on intensity image.

is initiated and an individual label is assigned to the ball. In frame
63, the left leg of the left person is not completely segmented in the
foreground partition, resulting in a gap between the person’s and
the leg’s blobs. Hence a new track is erroneously initiated for the
leg. Such behavior can be avoided by assigning identical labels to
objects whose descriptors are “close enough”. In frame 65, the ball
and the left person are assigned the same label. However, the ball’s
track could be recovered once it re-detaches from the person by ex-
tending the data association stage to m past frames (instead of 1) in
Equations 4 and 6. This will be the object of future work.

Whereas all objects in the Ping-pong sequence are separated by
about the same distance from the camera, the Occlusion sequence
depicted in Figure 4 contains useful depth information for the seg-
mentation of overlapping objects. This is visible in frames 107, 114
and 118, where the two persons are differentiated in spite of belong-
ing to the same blob in the foreground partition. Note also how a
new track is initialized after the total occlusion occurring between
frames 107 and 114; this could again be avoided by considering
descriptors from several past frames in the data association stage.

3.2.2 People recognition

One common kind of video understanding is people recognition.
This is widely used in surveillance applications such as intrusion
detection and people counting. The example depicted in Figure 5
shows a living-room where three objects have been successively
brought in: an office chair, a soft toy and a person. The objects
are classified based on their apparent elongatedness Exy and depth
variance σ2

z , as described in Section 2.4.
To obtain the reference description, a typical person has been

crudely modeled as a rectangular parallelepiped of aspect ratio 1:4
and apparent depth 0.2 m. This leads to Exy,ref = 0.06 and σ2

z,ref =
3.4 · 10−3. More refined people models could instead be derived
from ground truth data. Using measurements from the example, the
Mahalanobis distance DM between the objects and the reference is
then computed:

• Person: Exy = 0.07, σ2
z = 2.2 ·10−3 ⇒ DM = 0.56 ·10−3

• Soft toy: Exy = 1.17, σ2
z = 3.1 ·10−3 ⇒ DM = 11.1 ·10−3

• Office chair: Exy = 0.75, σ2
z = 21 ·10−3 ⇒ DM = 10.6 ·10−3.

The Mahalanobis distance is one order of magnitude smaller for the
person than for the other objects, making it easily classifiable.

1521

(a)

Figure 5: People recognition example. (a) Intensity image; (b) ob-
ject partition. Objects classified as people are highlighted in yellow.

(a)

Figure 6: Object localization example. (a) Definition of non-
overlapping volumes; (b) localization of three objects with respect
to the volumes indicated by object colorization.

3.2.3 Object localization

Object localization is notably needed to analyze object trajectories
or to monitor particular areas for presence. The latter was the goal
of the example illustrated in Figure 6. Here, the filmed space has
been subdivided into three non-overlapping volumes. In order to
avoid determining the camera calibration matrix, the volumes have
been directly defined in the intensity image by means of the GUI.
Since, unlike 2D video, each image point is uniquely located thanks
to the depth information, apparent object surfaces can be labeled
according to the volume they belong to.

3.2.4 Performance analysis

A major goal of the proposed method was to allow for real-time
operation on an embedded system. In order to coarsely assess the
performance of the algorithm, execution times of individual pro-
cessing steps have been measured throughout the experiments. The
results are summarized in Table 1. With an empty scene (no ob-
jects), only GUI handling, rendering and foreground segmentation
are carried out. This leads to the minimal processing time of 40 ms,
which corresponds to the maximum frame rate of 24 fps. With a
typical scene involving three average-sized objects (e.g., the Ping-
pong sequence in Figure 3), the frame rate drops to 11 fps. This is
still considered acceptable for real-time video processing. Note that
the performance loss is mainly due to object segmentation, where a
time-consuming iterative region growing algorithm is used (Section
2.2). Since the effort increases with the number of pixels to be seg-
mented, the image portion occupied by foreground objects must be
kept small in order to maintain an acceptable frame rate.

4. CONCLUSIONS

A method for real-time video understanding on an embedded sys-
tem has been proposed and validated in three different applications.
The results have shown how distance information can be exploited
to segment objects individually even in the presence of partial oc-
clusion. Also, 3D video has enabled us to locate objects in space
effectively. Finally, performance analysis has shown that with rea-
sonably complex scenes, the algorithm runs at over 10 fps on a pro-
cessor clocked at 533 MHz.

Step Min. (empty scene) Typ. (3 objects)
GUI handling & rendering 15.3 15.3
Foreground segmentation 25.1 25.1
Object segmentation - 32.9
Temporal tracking - 0.8
Shape analysis - 2.3
Object localization - 13.1
Total 40.4 (24 fps) 89.5 (11 fps)

Table 1: Execution time of individual processing steps (in ms).

These encouraging results allow us to outline some future work
directions. So far, objects cannot be followed individually once they
merge. This could be achieved by further subdividing objects into
regions based on the motion projected objects or regions from past
frames. This approach has been successfully applied to the 2D case
by the authors [2]. One could also extend data association to mul-
tiple past frames in order to recover objects after total occlusions
or temporary disappearance. Finally, parallelization could be ex-
ploited in order to increase the frame rate, notably by performing
independent tasks (e.g., tracking, shape analysis and object local-
ization) simultaneously.

REFERENCES

[1] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Anal-
ysis, and Machine Vision, PWS Publishing, 1998.

[2] A. Cavallaro, O. Steiger, and T. Ebrahimi, “Tracking video
objects in cluttered background,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 15, no. 4, pp. 575–584,
April 2005.

[3] O. Steiger, A. Cavallaro, and T. Ebrahimi, “Real-time gen-
eration of annotated video for surveillance,” in Proc. of IEE
Workshop on Image Analysis for Multimedia Interactive Ser-
vices, WIAMIS’05, April 2005.

[4] S. Murakami and A. Wada, “An automatic extraction and dis-
play method of walking persons’ trajectories,” in Proc. of 15th
Intl. Conf. on Pattern Recognition, September 2000, vol. 4, pp.
611–614.

[5] D.W. Hansen et al., “Cluster tracking with time-of-flight cam-
eras,” in Computer Vision and Pattern Recognition Work-
shops, CVPRW ’08, June 2008, pp. 1–6.

[6] S.E. Ghobadi et al., “Detection and classification of mov-
ing objects-stereo or time-of-flight images,” in Proc. of
Intl. Conf. on Computational Intelligence and Security,,
November 2006, vol. 1, pp. 11–16.

[7] E. Stoykova et al., “3-d time-varying scene capture technolo-
gies - a survey,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 17, no. 11, pp. 1568–1586, November 2007.

[8] M. Piccardi, “Background subtraction techniques: a review,”
in Proc. of IEEE Intl. Conf. on Systems, Man and Cybernetics,
October 2004, vol. 4, pp. 3099 – 3104.

[9] G. Egnal, M. Mintz, and R.P. Wildes, “A stereo confidence
metric using single view imagery,” Image and Vision Comput-
ing, vol. 22, no. 12, pp. 943–957, October 2002.

[10] O. Steiger, J. Felder, and S. Weiss, “Calibration of time-of-
flight range imaging cameras,” in Proc. of IEEE Conference
on Image Processing, October 2008, pp. 1968–1971.

1522

