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ABSTRACT

This paper focuses on a near optimal detector based on dy-
namic programming for voice activation. The algorithm is
analysed and evaluated against the optimal detector while
taking both accuracy and complexity factors into consider-
ation. It is shown that when using the more restrictive frame-
work of Hidden Markov models (HMMs) with state duration
constraints this is improving both the accuracy of the approx-
imate detector as well as providing a substantial boost to the
detection performance.

1. INTRODUCTION

Voice activation is a desirable feature for modern voice
driven user interfaces as it offers the possibility for a hands
free interaction mode. In many practical use cases this can be
very challenging due to reduced audio quality when speak-
ing from a distance or due to the noisy surroundings. A typ-
ical setup for such a system requires the keyword spotter to
be in a continuous listening mode for prolonged time inter-
vals therefore placing high demands on the quality of the al-
gorithm for which near zero false acceptance rates must be
combined with very high detection rates.

Starting with methods closer to a conventional speech
recognition system [1, 2, 3] detection algorithms have been
extended with approaches which focus more directly on the
keyword model and avoid the use of potentially problematic
garbage or filler models [4, 5, 6, 7]. In the following, the pa-
per will revise the design options for the keyword detectors
and focus on the complexity and optimality aspects for an
algorithm adapted from [4]. New to previous presentations,
the suboptimality of this algorithm will be clearly illustrated.
In the final sections a set of experiments are performed and
conclusions are drawn. Concerning the lack of precision for
the fast but approximate algorithm the experimental findings
are rather surprising.

2. DETECTION WITH CDHMM

As in a typical speech recognition setup, the input audio
waveform is transformed into a sequence of overlapping
frames from which feature vectors are extracted. These ob-
servation vectorso1:n = o1,o2, ...,on are then modeled as a 1st

order Markov chain using hidden Markov models [8]. Fre-
quently these vectors take values from a continuous space
and HMMs with continuous state densities (CDHMMs) are
used as the modelling tool.

In a frame synchronous detection algorithm at each frame
we have to evaluate two competing hypotheses:

H0: keyword was not spoken
H1: keyword was spoken

When using CDHMMs one often used approach [1, 3]
is to have a model for the keywordK and a filler modelG
for everything else (i.e. non-keyword speech, silence and
environmental noise). The recognition grammar has then two
entries corresponding to the two hypotheses:

H0: < G >
H1: < G >< K >

and leads to comparingP(G|o1:n) andP(GK|o1:n).
These can be expressed as

P(o1:n|G)P(H0)

P(o1:n)
≷

P(o1:n|GK)P(H1)

P(o1:n)

which makes possible their evaluation within an HMM
based framework. HereP(Ho) andP(H1) are the prior prob-
abilities forH0 andH1, respectively.

When using the CDHMMs in a Viterbi (i.e. best path)
decoding setup we have

P(o1:n|GK) = max
t

P(o1:t−1|G)P(ot:n|K)

with t∗, the optimal time frame for separation between
the two models.

With a one state model forG 1 we can also factor
P(o1:n|G) as

P(o1:n|G) = P(o1:t∗−1|G)P(ot∗:n|G)

which then transforms the decision into

P(ot∗:n|K)P(H1) ≷ P(ot∗:n|G)P(H0)

or, as a log criterion

logP(ot∗:n|K)− logP(ot∗:n|G) ≷ θ (1)

with θ the decision threshold.
With this we can see that the filler model has two roles;

providing the means for finding the optimal time segmen-
tation t∗ and giving a reference score against which model
scores are evaluated. For a good detection it is therefore im-
portant that an accurate filler model be trained which can be
a difficult task. In addition, in a system of several active key-
words each one needs, ideally, its own filler model.

To avoid using a filler model, a criterion focusing only on
the model likelihoods can be derived. Considering an unin-
formative filler model (P(ot:n|G,Ho) ≈ P(ot:n|G,H1) for all
t) the equation (1) becomes

logP(ot∗:n|K) ≷ ξ

1or assuming this as a very close approximation in the generalcase
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where we are still faced with the task of finding the optimal
time segmentation forK. Since we must find it without the
help of a filler model an acceptable method for comparing
hypotheses with different frame lengths can search for the
maximal average log likelihood per frame as in:

max
t≤n

logP(ot:n|K)

n− t +1
≷ δ (2)

3. VITERBI ALGORITHM

3.1 Notations and algorithm

As mentioned in the previous section, the valueP(o1:n|K)
for the optimal state sequence is found using the Viterbi al-
gorithm. Let us consider a CDHMM havingS states with
parameters(π ,A,B) whereAik is the log transition probabil-
ity from statei to k, B(o|sk) gives the log of the state emission
likelihood for allk ∈ 1,S andπk gives the initial log probabil-
ity for statek. If we denoteP(o1:n|sk) the likelihood of gen-
erating the observation sequenceo1:n while being at framen
in statesk the Viterbi algorithm recursively computes these
values for all model states as described below.

Initialization for all k ∈ 1,S.

logP(o1|sk) = B(oo|sk)+ πk

Recursionn ≥ 1 and for allk ∈ 1,S.

logP(o1:n|sk) = B(on|sk)+max
i

{logP(o1:n−1|si)+ Aik}

3.2 Token passing formulation

In a token passing formulation [9], each state has associated
a token with the value

Tsk(n) = logP(o1:n|sk)

If we denote bys0 a “virtual” entry state and we extend
the transition matrix with a zero’th line such thatA0k = πk
the algorithm can be rewritten as

Initialization for all k ∈ 1,S

Ts0(0) = 0
Tsk (0) = −∞

Recursionn ≥ 1 and for allk ∈ 1,S

Ts0(n) = −∞
Tsk(n) = B(on|sk)+maxi∈0,S {Tsi(n−1)+ Aik}

Let us denote byC0(A) the number of elements inA for
which the probability is non zero hence the log is greater than
−∞ and including them in the maximization search makes
sense. In this case if we evaluate the cost of a comparison to
be similar to an addition and we leave out the costs for theB
functions we can count the number of operations required by
the algorithm above at 2C0(A) additions per frame.

In terms of memory the algorithm requires the storage
of two S +1 sized arrays of token values for the consecutive
time instantsn− 1,n. However, when the transition matrix
has no cycles, as it is often the case for the speech recognition
word models, one single array with a proper state updating
sequence is enough.

4. NORMALIZED VITERBI ALGORITHMS

4.1 Accurate algorithms

In a direct approach, finding the optimum for equation (2)
would require running in paralleln− tmin +1 forward Viterbi
algorithms wheretmin is a minimal time instant where the
search is started, assuming a maximal feasible length for
the keywordK. Token values need to be stored for all the
searched lengths. Even if a minimum feasible duration is
considered, the memory requirements or number of compu-
tations are not reduced since state scores need to be buffered
for n − tmax + 1 frames and one minimum length Viterbi
search has to be ramped up each frame.

A better solution consists in buffering the state scores for
n− tmin + 1 frames and running the Viterbi algorithm2 on a
time reversed model starting with the current framen down
to tmin.

Both cases require similar storage and computational
complexity. The computation required is of 2(n − tmin +
1)C0(A) additions while(n − tmin + 2)S values need to be
stored.

4.2 Approximate algorithm

Closely following the approach at subsection 3.2, the ap-
proximate search has two values updated for each state at
each frame. These are the cumulative log likelihood, as in
the token passing algorithm and the length, in frames, of the
summation. In this case locally optimal decisions are taken
at each state for propagating the values for which the frame
normalized likelihood is highest. In contrast with the previ-
ous algorithm, the entry state is left active during each frame
of the search allowing the propagation of hypotheses with
variable lengths for the state sequences.

Initialization for all k ∈ 1,S.

Ts0(0) = 0 Ls0(0) = 0
Tsk (0) = −∞ Lsk(0) = 0

Recursionn ≥ 1 and for allk ∈ 1,S.

Ts0(n) = 0 Ls0(n) = 0

i∗ = argmax
i∈0,S

{
B(on|sk)+ Tsi(n−1)+ Aik

Lsi(n−1)+1
}

Tsk(n) = B(on|sk)+ Tsi∗
(n−1)+ Ai∗k

Lsk(n) = Lsi∗
(n−1)+1

4.3 Computational benefits

Counting the number of operations each frame we have
C0(A) increments,C0(A) divisions and 3C0(A)−S additions,
assuming again equal costs for additions and comparisons.
Even ignoring how we weight the costs for each operation
type we can notice that this algorithm is considerably more
expensive than the conventional Viterbi search but substan-
tially less complex than the accurate methods from subsec-
tion 4.1.

2in a slightly modified initialization and terminal condition
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Figure 1: Local decision point

4.4 Sub-optimality and duration constrained models

Since the objective function does not satisfy the dynamic pro-
gramming optimality condition the algorithm is not guaran-
teed to produce the optimal result. We can illustrate this with
a simple drawing in figure 1 where we have decided at timet
in favor of the path starting att0. By T0 andT1 we denote the
token values among which we have made the selection and
by T∆ the remaining log likelihood increment untiltn. We de-
note the path lengths asLi = t−ti +1, i = 0,1 andL∆ = tn−t.

Due to the local decision att we haveT0/L0 ≥ T1/L1 and
at tn we have the confidence equal to(To + T∆)/(Lo + L∆).
Was the decision att optimal considering the timetn ?

(To + T∆)/(Lo + L∆) ≷ (T1 + T∆)/(L1 + L∆)

We can transform the previous comparison into

T0

L0
+

T0

L0

L∆
L1

+
T∆
L0

≷
T1

L1
+

T1

L1

L∆
L0

+
T∆
L1

from which we can see that onlyT0 ≥ T1 andL0 ≤ L1 will
guarantee the desired outcome. For all other values, although
there is a positive bias given by the decision att the final
outcome can be reversed depending onT∆ andL∆ which are
unknown att.
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Figure 2: Confidence values for the optimal and sub-optimal
algorithms

In practice it was observed that the algorithm gives most
of the time quite close approximations. As example, in fig-
ure 2 a comparison is shown with the confidence levels for
the accurate algorithm which are in the upper curve. For

sk2

sk3

sk4

sk1 sk

Figure 3: Duration constrained and duration unconstrained
states

this example typical left-to-right duration unconstrained key-
word models were used. It can be seen that while preserving
the detection peak significant differences are located nearit.
This was a typical outcome for all the samples in the testing
database.

Although the duration unconstrained models are cheap-
est to implement, a more accurate modelling of the keywords
should make use of hard duration constraints for each state.
In figure 3 an example of such duration constrained state is
shown against an unconstrained state on the right hand side.
For the duration constrained case the statessk1, . . . ,sk4, share
the same state emission likelihood functionB(o|sk) and the
duration for the state is constrained in this example at mini-
mum 3 or maximum 4 frames.

With duration constraints the transition matrix is larger
having considerable more significant transitions to evaluate.
At the same time, more token values need to be stored, one
for each of the states, resulting in a substantial increase in
the complexity of the algorithm. However, this cost is worth-
while since these models not only produce a much closer
approximation of the confidences of the accurate algorithm
but are also capable of a substantially better rejection perfor-
mance as will be shown in the experimental section. When
these were compared against the optimal detector on the test
data the difference in the confidence values were marginal
in all cases. This increased accuracy comes as result of the
more constrained optimization space as well as of the fact
that for each statesk there are now much more hypotheses
corresponding tosk1, . . . ,skDmax which can survive the risk
of an incorrect local decision.
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5. THRESHOLD STABILITY

In an ideal case, with accurate enough models, the expres-
sions

max
t≤n

logP(ot:n|K,Ho)

n− t +1

and

max
t≤n

logP(ot:n|K,H1)

n− t +1

will result in a completely separable set of values for the
testing data and the thresholdδ from equation 2 will be inde-
pendent on the given keyword and environment condition. In
practice, the likelihood values are found to have a large vari-
ation, depending heavily on the keyword type and environ-
ment. In an attempt to stabilize such dependencies the state
emission likelihoods were each frame normalized against the
top scoring states in a similar approach as the on-line garbage
model method from [2].

Brank(o|sk) = B(o|sk)−BQ(o)

whereBQ(o) is theQth percentile for the distribution of
the state scores for the given model{B(o|sk)|k ∈ 1,S}.

6. EXPERIMENTS

6.1 Experimental setup

A set of experiments was conducted on an in house recorded
database consisting of 8 speakers and about 60 speaker spe-
cific keywords with 12 repetitions for each out of which
3 were used for training a speaker and keyword specific
CDHMM.

The feature extraction is based on 13 FFT derived MEL
cepstral coefficients together with their 1st order time deriva-
tives. For noise robustness, a feature vector normalization
scheme was used as in [10]. For creating the noise testing
data multi-condition noise was mixed to the original data at
an SNR of about 5 dB.

The training uses a simple iterative Viterbi procedure to
estimate the parameters. The number of states is decided
based on the keyword length while a single Gaussian density
is used for the state functionB(o|sk). When using duration
constraints these are estimated based on the trained duration
unconstrained models by doing a forced alignment on the
training data and taking for each state a wide enough range
to fit the alignments.

6.2 Experimental results

The results are presented in the Tables 1-2. For selected lev-
els of the operating accuracy for the detectors the false ac-
ceptance percentage is displayed. Three test cases are shown:
ML, MLdur andRankdur. These correspond to using log like-
lihood scores with duration unconstrained models then with
duration constrained ones and, finally, when using the rank
based state likelihoods as presented in section 5. In the rank
based case the value of the 90th percentile was used as refer-
ence.

From the tables we observe that in the noise free case
all methods produce near flawless performance. However,
it is obvious that the duration unconstrained models per-
form quite poorly for the noisy conditions. With duration

Detection (%) 100 98 95 90 80 70
ML 0.03 0.02 0.01 0.01 0.01 0.00
MLdur 0.06 0.03 0.03 0.02 0.01 0.01
Rankdur 0.03 0.00 0.00 0.00 0.00 0.00

Table 1: False acceptance rates (%) for the noise free case

Detection (%) 100 98 95 90 80 70
ML 62.76 32.36 16.05 6.21 1.73 0.31
MLdur 16.01 6.75 1.34 0.40 0.10 0.03
Rankdur 15.08 3.38 0.75 0.33 0.03 0.00
Rank 42.59 16.76 10.35 4.55 0.54 0.12
Rank∗ 46.96 18.03 11.07 4.31 0.54 0.16

Table 2: False acceptance rates (%) in the noisy condition

constraints a substantial detection improvement is observed
while with rank based scores another significant gain is seen.

In the noisy test case we also evaluated the effect of
the approximate algorithm. For duration constrained mod-
els there were no practical differences when comparing an
accurate confidence evaluation with the fast but approximate
algorithm. However, for duration unconstrained models the
results for the accurate evaluation inRank∗ line are in fact
slightly worse than for the fast algorithm (Rank line). The
better performance of the approximate approach ca be ex-
plained by the fact that detection peaks are preserved while
in outlier situations confidences are sometimes reduced mak-
ing so for a slightly better separation of the two hypotheses.

7. CONCLUSION

In this paper we have reviewed the keyword-spotting frame-
work when using CDHMMs as detectors. The focus was on
evaluating a frame synchronous setup which does not require
filler models. In addition to optimal but expensive search
procedures an approximate algorithm is presented and evalu-
ated. In this context, duration constrained CDHMMs are pro-
posed for offering a high quality of detection in the presence
of noise. In addition, the quality of approximation for the
confidence values is also much better. A surprising observa-
tion concerning the approximate algorithm is that although,
in general, it can give significantly lower confidences, it does
preserve rather closely the detection peaks. By this, when us-
ing the duration unconstrained CDHMMs the detection per-
formance is even slightly increased in comparison with the
accurate but computationally expensive detector.
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