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ABSTRACT When using CDHMMs one often used approach [1, 3]
. : is to have a model for the keywoidl and a filler modelG

This paper focuses on a near optimal detector based On.d?o'r everything else (i.e. nonykeyword speech, silence and
gﬁg;;/csgcriogrr%men\jg;gai%rdvgécgnas?'t\(]?%gﬁggf d&;ltggggmv'hsi%nvi_ronmental noise). The recognition grammar has then two
taking both accuracy and complexity factors into cons;ider?ntrles corresponding to the two hypotheses:
ation. Itis shown that when using the more restrictive framélo: <G>
work of Hidden Markov models (HMMs) with state durationH1: <G ><K >
constraints this is improving both the accuracy of the appro and leads to comparirf®(G|oy.n) andP(GK|o1.).
imate detector as well as providing a substantial boostdo th  These can be expressed as
detection performance.

1. INTRODUCTION P(orn) = P(01:n)

\oice activation is a desirable feature for modern voice which makes possible their evaluation within an HMM
driven user interfaces as it offers the possibility for aden based framework. Heilg(H,) andP(H;) are the prior prob-
free interaction mode. In many practical use cases thisean [abilities forHp andHj, respectively.
very challenging due to reduced audio quality when speak- When using the CDHMMs in a Viterbi (i.e. best path)
ing from a distance or due to the noisy surroundings. A typdecoding setup we have
ical setup for such a system requires the keyword spotter to
be in a continuous listening mode for prolonged time inter- P(01:n|GK) = maxP(011_1|G)P(0:n|K)
vals therefore placing high demands on the quality of the al- t
gorithm for which near zero false acceptance rates must be jith t*, the optimal time frame for separation between
combined with very high detection rates. the two models.
Starting with methods closer to a conventional speech \ith a one state model fo6s 1 we can also factor
recognition system [1, 2, 3] detection algorithms have beep(ol:n|G) as
extended with approaches which focus more directly on the
keyword model and avoid the use of potentially problematic ) _ N ..
garbage or filler models [4, 5, 6, 7]. In the following, the pa- P(01n|G) = P(012:-1|G)P(0r-n[G)
per will revise the design options for the keyword detectors  which then transforms the decision into
and focus on the complexity and optimality aspects for an
algorithm adapted from [4]. New to previous presentations, P(0+:n|K)P(H1) = P(0t+:n|G)P(Ho)
the suboptimality of this algorithm will be clearly illustied. o
In the final sections a set of experiments are performed and ©F, as alog criterion
conclusions are drawn. Concerning the lack of precision for
the fast but approximate algorithm the experimental fingling logP(0t-:n|K) —logP(0r+:n|G) = 6 (1)
are rather surprising.

with 6 the decision threshold.
With this we can see that the filler model has two roles;
2. DETECTION WITH CDHMM providing the means for finding the optimal time segmen-

As in a typical speech recognition setup, the input audidationt™ and giving a reference score against which model

waveform is transformed into a sequence of overlappingCPres are evaluated. For a good detection it is therefore im
frames from which feature vectors are extracted. These 0g_ortant that an accurate filler model be trained which can be

servation vectore; , = 01,0». ....0n are then modeledas 81 & difficult task. In addition, in a system of several activg-ke
order Markov chain using hidden Markov models [8]. Fre-Words each one needs, ideally, its own filler model.
quently these vectors take values from a continuous space 10 @void using afiller model, a criterion focusing only on
and HMMs with continuous state densities (CDHMMSs) arethe mo_del _I|keI|hoods can be derived. Considering an unin-
used as the modelling tool. formative filler model P(0u:n|G,Ho) &~ P(0r:n|G, H1) for all
In a frame synchronous detection algorithm at each fram® the equation (1) becomes
we have to evaluate two competing hypotheses:
Petingyp l0gP(0r:n]K) = &

Ho: keyword was not spoken

Hi: keyword was spoken Lor assuming this as a very close approximation in the geness
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where we are still faced with the task of finding the optimal
time segmentation foK. Since we must find it without the
help of a filler model an acceptable method for comparing

4. NORMALIZED VITERBI ALGORITHMS
4.1 Accurate algorithms

hypotheses with different frame lengths can search for thin a direct approach, finding the optimum for equation (2)

maximal average log likelihood per frame as in:

logP(0rn[K) _
M rer <° @

3. VITERBI ALGORITHM

3.1 Notations and algorithm
As mentioned in the previous section, the vaR@1|K)

for the optimal state sequence is found using the Viterbi al-
gorithm. Let us consider a CDHMM having states with

would require running in parallel—tj, + 1 forward Viterbi
algorithms wherdy,, is a minimal time instant where the
search is started, assuming a maximal feasible length for
the keywordK. Token values need to be stored for all the
searched lengths. Even if a minimum feasible duration is
considered, the memory requirements or number of compu-
tations are not reduced since state scores need to be lauffere
for n—tyex + 1 frames and one minimum length Viterbi
search has to be ramped up each frame.

A better solution consists in buffering the state scores for
n—tmin+ 1 frames and running the Viterbi algorithfron a

parameters$rt, A, B) whereAy is the log transition probabil- time reversed model starting with the current framegown
ity from statei tok, B(o|s,) gives the log of the state emission tg t,,,.

likelihood for allk € 1, Sandr, gives the initial log probabil-
ity for statek. If we denoteP(01|s«) the likelihood of gen-

erating the observation sequertgg, while being at framen

Both cases require similar storage and computational
complexity. The computation required is ofr?— tyin +
1)G5(A) additions while(n — twin + 2)S values need to be

in statesy the Viterbi algorithm recursively computes thesestored.

values for all model states as described below.

Initialization forallk e 1,S
logP(0;|s) = B(0o|s«) + Tk

Recursionn> 1 and forallk € 1,S.

logP(01:n|Sk) = B(0On|) + miax{log P(o1n-1ls) + Ak}

3.2 Token passing formulation

4.2 Approximate algorithm

Closely following the approach at subsection 3.2, the ap-
proximate search has two values updated for each state at
each frame. These are the cumulative log likelihood, as in
the token passing algorithm and the length, in frames, of the
summation. In this case locally optimal decisions are taken
at each state for propagating the values for which the frame
normalized likelihood is highest. In contrast with the prev
ous algorithm, the entry state is left active during eacmfra

of the search allowing the propagation of hypotheses with

In a token passing formulation [9], each state has assaciat¢/@rable lengths for the state sequences.

a token with the value
Ts (n) = logP(01:n|s)

If we denote bysy a “virtual” entry state and we extend

the transition matrix with a zero’th line such thag, = 75
the algorithm can be rewritten as

Initialization forallke1,S

T (0
Ts (O

Recursionn> 1 and forallkk € 1,S

0

—00

~=

Ty (n) = —oo
Ts.(n) = B(on[s) + max g {Ts (N— 1) + A}

Let us denote by5(A) the number of elements i for

which the probability is non zero hence the log is greatan tha

Initialization forallke1,S

Recursionn> 1 and foralk € 1,S

To(M) =0 Lg(n)=0

. B(on|sc) + Ts (N— 1) + Ak
" = argma
ig@X{ T E—

Ts.(n) = B(on|s) +Ts. (N— 1) + A
Ls(n)=Ls.(n—=1)+1

—oo and including them in the maximization search makest.3 Computational benefits

sense. In this case if we evaluate the cost of a comparison
be similar to an addition and we leave out the costs foBthe
functions we can count the number of operations required b

the algorithm above at@(A) additions per frame.

In terms of memory the algorithm requires the storag
of two S+ 1 sized arrays of token values for the consecutiv
time instantan— 1,n. However, when the transition matrix
has no cycles, as it is often the case for the speech recogniti
word models, one single array with a proper state updatin

sequence is enough.

E’ounting the number of operations each frame we have
5(A) incrementsCgs(A) divisions and 85(A) — Sadditions,
ssuming again equal costs for additions and comparisons.

gEven ignoring how we weight the costs for each operation

ype we can notice that this algorithm is considerably more
expensive than the conventional Viterbi search but substan
tially less complex than the accurate methods from subsec-
Hon 4.1.

2in a slightly modified initialization and terminal conditio
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Figure 1: Local decision point

4.4 Sub-optimality and duration constrained models

Since the objective function does not satisfy the dynanue pr

gramming optimality condition the algorithm is not guaran-

teed to produce the optimal result. We can illustrate thte wi Figure 3: Duration constrained and duration unconstrained
a simple drawing in figure 1 where we have decided at time states

in favor of the path starting &. By Tp andT; we denote the

token values among which we have made the selection and

by Ta the remaining log likelihood increment urgil We de-
note the path lengths =t —t;+1,i =0,1 andLp =t,—t.

Due to the local decision awe havely/Lo > Ty /L1 and
att, we have the confidence equal {(® + Ta)/(Lo + La).

Was the decision dtoptimal considering the time ?

We can transform the previous comparison into

from which we can see that only > T; andlLg < L1 will
guarantee the desired outcome. For all other values, athou
there is a positive bias given by the decisiorn dhe final
outcome can be reversed dependinglg@ndL, which are
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this example typical left-to-right duration unconstraiey-
word models were used. It can be seen that while preserving
the detection peak significant differences are located ihear
This was a typical outcome for all the samples in the testing
database.

Although the duration unconstrained models are cheap-
est to implement, a more accurate modelling of the keywords
should make use of hard duration constraints for each state.
In figure 3 an example of such duration constrained state is
shown against an unconstrained state on the right hand side.
For the duration constrained case the statgs. ., S, share
the same state emission likelihood functBfo|sc) and the
duration for the state is constrained in this example at-mini
mum 3 or maximum 4 frames.

With duration constraints the transition matrix is larger
having considerable more significant transitions to evalua
At the same time, more token values need to be stored, one
for each of the states, resulting in a substantial incre@se i
the complexity of the algorithm. However, this cost is werth
while since these models not only produce a much closer
approximation of the confidences of the accurate algorithm
but are also capable of a substantially better rejectiofoper
mance as will be shown in the experimental section. When
these were compared against the optimal detector on the test
data the difference in the confidence values were marginal
in all cases. This increased accuracy comes as result of the
more constrained optimization space as well as of the fact
that for each statg there are now much more hypotheses
corresponding t@a, . - ., xomax Which can survive the risk
of an incorrect local decision.

Figure 2: Confidence values for the optimal and sub-optimal
algorithms

In practice it was observed that the algorithm gives most
of the time quite close approximations. As example, in fig-
ure 2 a comparison is shown with the confidence levels for
the accurate algorithm which are in the upper curve. For
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5. THRESHOLD STABILITY Detection (%)| 100 98 95 90 80 70

. . ML 0.03 0.02 0.01 0.01 0.01 o0.00
In-an ideal case, with accurate enough models, the EXPresM Ly, 0.06 0.03 003 0.02 001 001
sions Rankqyr 0.03 0.00 0.00 0.00 0.00 0.00
XIogP(ot;n|K,Ho)
t<n n—t+1 Table 1: False acceptance rates (%) for the noise free case
and .
_ Detection (%)| 100 98 95 90 80 70
w ML 62.76 32.36 16.05 6.21 1.73 0.31
tsn n-t+41 MLgur 16.01 6.75 1.34 0.40 0.10 0.03
will result in a completely separable set of values for the Rankgur 1508 338 0.75 0.33 0.03 0.00
testing data and the thresha@ldrom equation 2 will be inde- ~ Rank 4259 16.76 10.35 455 054 0.12
pendent on the given keyword and environment condition. In Rankx 46.96 18.03 11.07 4.31 0.54 0.16

practice, the likelihood values are found to have a large var
ation, depending heavily on the keyword type and environ- ) . . "

ment. In an attempt to stabilize such dependencies the statd@P!e 2: False acceptance rates (%) in the noisy condition
emission likelihoods were each frame normalized agairmst th
top scoring states in a similar approach as the on-line garba

model method from [2]. constraints a substantial detection improvement is oleskerv

while with rank based scores another significant gain is.seen
. _ nQ In the noisy test case we also evaluated the effect of

Brank (0l8) = B(0]s) — B~(0) the approximate algorithm. For duration constrained mod-
whereBR(0) is the Qth percentile for the distribution of €ls there were no practical differences when comparing an

the state scores for the given mod8l(o|s) |k € T,S}. accurate confidence evaluation with the fast but approxémat
g 4Biols.)| ) algorithm. However, for duration unconstrained models the
results for the accurate evaluationRanksx line are in fact
6. EXPERIMENTS slightly worse than for the fast algorithnRgnk line). The
6.1 Experimental setup better performance of the approximate approach ca be ex-

é)éained by the fact that detection peaks are preserved while

A set of experiments was conducted on an in house record lier situati fi X K
database consisting of 8 speakers and about 60 speaker s outlier situations confidences are sometimes reduced ma

cific keywords with 12 repetitions for each out of which Mg so for a slightly better separation of the two hypotheses

gDW:'I\’/(laMl:ISGd for training a speaker and keyword specific 7 CONCLUSION

The feature extraction is based on 13 FFT derived MELn this paper we have reviewed the keyword-spotting frame-
cepstral coefficients together with their 1st order timévder  work when using CDHMMs as detectors. The focus was on
tives. For noise robustness, a feature vector normalizatiogvaluating a frame synchronous setup which does not require
scheme was used as in [10]. For creating the noise testirfiler models. In addition to optimal but expensive search
data multi-condition noise was mixed to the original data aprocedures an approximate algorithm is presented and-evalu
an SNR of about 5 dB. ated. In this context, duration constrained CDHMMs are pro-

The training uses a simple iterative Viterbi procedure toposed for offering a high quality of detection in the presenc
estimate the parameters. The number of states is decidefl noise. In addition, the quality of approximation for the
based on the keyword length while a single Gaussian densigonfidence values is also much better. A surprising observa-
is used for the state functidB(o|s). When using duration tion concerning the approximate algorithm is that althqugh
constraints these are estimated based on the trainedaturatiin general, it can give significantly lower confidences, iéslo
unconstrained models by doing a forced alignment on th@reserve rather closely the detection peaks. By this, when u
training data and taking for each state a wide enough rangag the duration unconstrained CDHMMs the detection per-
to fit the alignments. formance is even slightly increased in comparison with the

accurate but computationally expensive detector.
6.2 Experimental results

The results are presented in the Tables 1-2. For selected lev
els of the operating accuracy for the detectors the false ac-
ceptance percentage is displayed. Three test cases ane:show
ML, MLg4,r andRanky,,. These correspond to using log like-
lihood scores with duration unconstrained models then with
duration constrained ones and, finally, when using the rank
based state likelihoods as presented in section 5. In the ran
based case the value of the 90th percentile was used as refer-
ence.

From the tables we observe that in the noise free case
all methods produce near flawless performance. However,
it is obvious that the duration unconstrained models per-
form quite poorly for the noisy conditions. With duration
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