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ABSTRACT 

Speech enhancement from measured speech signals is fun-

damental in a wide range of instruments. It relies on a noise 

estimate which can be obtained using techniques such as the 

minimum statistics (MS) approach. In this paper, a novel 

approach for Empirical Mode Decomposition (EMD) based 

noise estimation and tracking (E�ET) is presented with ap-

plication to speech enhancement. Spectral analysis of non-

stationary signals such as speech is performed effectively 

using EMD. The Improved Minima Controlled Recursive 

Averaging (IMCRA) that evolved from MS has been shown 

to be effective in non-stationary environments. E�ET is able 

to use EMD in a novel way to estimate the noise spectrum 

more accurately than IMCRA and enhance speech more 

effectively than conventional log-MMSE approaches. A 

comparative performance study is included that demon-

strates that it achieves improved speech quality than a con-

ventional log-MMSE filtering approach with better noise 

estimation, even during periods of strong speech activity. 

1. I	TRODUCTIO	 

A common problem encountered in speech enhancement 

systems is the removal of unwanted disturbances, i.e. noise 

from desired speech signals. Adaptive noise cancellation is 

commonly performed when enhancing speech sequences 

when a noise reference is available. Single-channel speech 

enhancement systems traditionally employ Voice Activity 

Detection (VAD) to estimate the statistics of the noise signal 

during silent segments. Newer flavours of noise estimation 

systems such as the MS-based [1] approaches and IMCRA 

[2] are able to estimate the noise spectrum based on the ob-

servation that the noisy signal power decays to values char-

acteristic of the contaminating noise during speech pauses. 

Significant interest is given to speech enhancement systems 

that have developed from the log-spectral amplitude estima-

tor (LSA) [3].  

Empirical Mode Decomposition (EMD) is an effective 

multi-resolution approach for analyzing non-stationary sig-

nals such as speech. By performing a sifting process, the 

EMD decomposes the desired signal into Intrinsic Mode 

Functions (IMFs) which are data-adaptive as opposed to 

other transforms such as the Discrete Wavelet Transform 

(DWT) which use predefined basis functions. Recent ap-

proaches for dual-channel [4] and single-channel speech en-

hancement [5][6][7] using EMD have been developed. The 

EMD-based denoising [5] and EMD-MMSE [6] of signals 

contaminated with stationary white noise are based on an 

empirically observed noise model derived from a study of 

IMF statistics in noise-only situations. Denoising involved 

removal of those IMFs whose energies exceeded a pre-

defined threshold and EMD-MMSE was performed by filter-

ing the IMFs formed from the decomposition of speech con-

taminated with white Gaussian noise. In [7], an optimum 

gain function is estimated for each IMF to suppress residual 

noise that may be retained after single channel speech en-

hancement algorithms.  

In this paper, a new ENET technique is proposed for 

speech enhancement and noise estimation. ENET uses EMD, 

IMCRA and the LSA estimator to provide improved noise 

estimation and speech enhancement. The background neces-

sary to understand the EMD and IMCRA is first presented in 

sections 2 and 3 respectively. In section 4, the novel ENET 

system with application to speech enhancement is developed. 

In section 5, results obtained from testing and comparing 

ENET to basic IMCRA/LSA speech estimation are presented 

and discussed. These tests are performed in non-stationary 

and varying SNR conditions. It shows that ENET has signifi-

cant potential when performed in highly non-stationary and 

time-varying environments. It also demonstrates the im-

proved noise tracking under strong speech presence. Finally, 

conclusions are made in section 6. 

2. EMPIRICAL MODE DECOMPOSITIO	 

2.1 Background 

EMD [8][9] is a non-linear technique for analyzing and rep-

resenting non-stationary signals. EMD is data-driven and 

decomposes a time domain signal into a complete and finite 

set of adaptive basis functions which are defined as Intrinsic 

Mode Functions (IMFs). Although these IMFs are not prede-

fined as is the case with the Fourier and the Wavelet Trans-

forms, the IMFs that are extracted are oscillatory and have 

no DC component. Figure 1 illustrates the main stages in the 

EMD algorithm. EMD examines the signal between two 

consecutive extrema (e.g. minima) and picks out the high 

frequency component that exists between these two points. 

The remaining local, low frequency component can then be 

found. The motivation behind the EMD is to perform this 

procedure on the entire signal and then to iterate on the re-

sidual low frequency parts. This allows identification of the 
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Figure 1 – EMD algorithm 

different oscillatory modes that exist in the signal. The IMFs 

found must be symmetric with respect to local zero means 

and have the same number of zero crossings and extrema. 

The IMF is considered as zero-mean based on some stop-

ping criteria such as the standard deviation between con-

secutively sifted functions [9]. 

By use of the EMD, the frequency information is em-

bedded in the IMFs. These data-adaptive basis functions give 

physical meaning to the underlying process. The reconstruc-

tion process is given in (1), which involves combining the N 

IMFs and the residual r[n]: 

    
1

[ ]  [ ]  [ ]
�

i

x n IMF n r n
=
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3. IMPROVED MI	IMA CO	TROLLED 

RECURSIVE AVERAGI	G 

IMCRA combines the minimum statistics approach with 

recursive averaging to perform noise spectrum estimation. A 

summary of the IMCRA algorithm is shown in Figure 2. 

Consider the model described by: 

 [ ] [ ] [ ]x n s n d n= +  (2) 

where [ ]x n  is the noisy speech signal, [ ]s n  is the original 

noise-free speech, and [ ]d n  is the noise source. Assuming 

the independence of the speech and the noise, the STFT of 

(2) gives: 

 ( ) ( ) ( ), , ,X k i S k i D k i= +  (3) 

for frequency bin k and time frame i. It is assumed that the 

STFT coefficients of both the speech and the noise have 
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Figure 2 – Block diagram of IMCRA noise estimation  

complex Gaussian distributions [3]. The first iteration of 

smoothing of the noisy speech spectrum ( ) ( ) 2
, ,P k i X k i=  

is performed in frequency and time to give the smoothed 

power spectrum ( ),fP k i . The minima values of ( ),fP k i  

are tracked using the MS approach, over a specified finite 

window of length D, to obtain ( ),min ,fP k i . Rough VAD is 

performed after smoothing and minimum tracking to pro-

duce an indicator function ( ),k iδ  for speech presence. This 

speech presence decision is based on conditions [2] set on 

the following ratios ( )min ,k iγ  and ( ),k iζ  as defined by: 

( ) ( )
( )

( )
( )

( )min
min ,min min ,min

,,
,      ,

, ,

f

f f

P k iP k i
k i k i

B P k i B P k i
γ ζ≜ ≜  

where minB  is the bias of the minimum noise estimate.  

( ),k iδ  is used in the second smoothing stage to elimi-

nate strong speech components from the short term spectrum 

( )P ,k i  before the time-domain recursive averaging. This 

exclusion enables improved minima tracking among the 

power components primarily associated with the contaminat-

ing noise source. The speech presence probability, ( ),p k i  is 

then estimated and used to compute the time- varying, fre-

quency dependent smoothing factor dα (k,i)ɶ  [2] as shown in 

(4) below: 

 ( )d d dα (k,i)=α + 1-α p(k,i)ɶ  (4) 

where smoothing parameter dα  ranges from [0, 1].  
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Figure 3 – Block diagram of ENET with application to speech enhancement 

Recursive averaging of the power spectral values, ( ),P k i , 

is then performed to obtain an estimate of the noise spec-

trum ( )dλ̂ k,i . IMCRA was shown in [2] to be more robust 

than the basic MS method since the minimum tracking was 

not used directly in the noise estimation. 

4. EMD-BASED 	OISE ESTIMATIO	 A	D 

TRACKI	G (E	ET) WITH APPLICATIO	 TO 

SPEECH E	HA	CEME	T 

Single channel speech enhancement algorithms rely on ac-

curate noise spectrum estimation and speech estimation. It 

was shown in [2] that eliminating strong speech segments 

from the second smoothing stage in IMCRA improves min-

ima tracking and the estimation of the speech presence 

probability. The new ENET system with application to 

speech enhancement is illustrated in Figure 3.  

The EMD pre-processing stage from Figure 3 breaks up 

the signal into two bands. One band has separated the 

stronger speech components along with some of the noise 

while the other contains the weaker speech components with 

the residual noise. These are then processed individually to 

estimate the noise power components and the speech compo-

nents in each signal band. 

4.1 E	ET Analysis  

The EMD pre-processing stage in Figure 3 decomposes the 

signal into two signal spaces which are useful for noise 

tracking and speech estimation. It can be interpreted as: 

 [ ] [ ] [ ]
2

1 1 1

[ ]

= = + =

= + =∑ ∑ ∑
M �

j j c

j j M c

x n IMF n IMF n I n  (5) 

where the EMD of the noisy signal [ ]x n  produces N IMFs 

and M<N. From (5), when c=1, let [ ]cI n  denote the band 

that contains stronger speech components as well as some 

noise. When c=2, let [ ]cI n  contain the residual noise as 

well as the weaker speech. Correspondingly, let ( ),cI k i  

denote the STFT of [ ]cI n . The IMCRA noise estimation 

routine is performed in ENET using the short-time power 

spectrum ( ) 2
,cI k i . The noise power spectrum, ( ),

ˆ ,d c k iλ , 

in the signal band c is estimated using recursive averaging: 

( ) ( ) ( ) ( ) ( ) 2

, , , ,
ˆ ˆ, 1 , , 1 , ,d c d c d c d c ck i k i k i k i I k iλ α λ α + = + − ɶ ɶ

  (6) 

After computing the noise estimate ( ),
ˆ ,d c k iλ  in ENET, 

enhancement may be performed using the optimal LSA esti-

mator [3]: 

 ( ) ( ) 2
min

ˆ{lg , lg , }c cS k i S k i Ε −   

where ( ),cS k i is the speech amplitude component that ex-

ists in band c and ( )ˆ ,cS k i  is the optimal speech estimate. 

The a priori SNR ( )ˆ ,c k iξ  is estimated using the modified, 

decision directed approach in [10]. The corresponding LSA 

gain function is derived in [3] and denoted as ( ), ,LSA cG k i  

for band c: 
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where ( ),cv k i  is a function of the a priori and a posteriori 

SNR as shown in [3]. The optimally modified LSA (OM-

LSA) estimator defined in [10] incorporates speech presence 

uncertainty to produce the gain ( ),cG k i : 

 ( ) ( ) ( ) ( ), 1 ,
, min, , c c

p k i p k i
c LSA cG k i G k i G

−=  (8) 

where ( ),cp k i  is the conditional speech presence probabil-

ity in band c, and the threshold minG is obtained from  [10] 

based on subjective criteria. Let ( ) ( )1 2,   ,I k i I k i =  I  and 

let ( ) ( )1 2,   ,G k i G k i =  G . The enhanced speech signal is 

then estimated from the noisy signal by: 

 ( )ˆ , TS k i = GI  (9) 

5.  PERFORMA	CE EVALUATIO	 

The ENET technique from Figure 3 was tested on speech 

signals corrupted with different types of non-stationary 
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background noises. Its performance was compared with the 

standard IMCRA algorithm for estimating the noise power 

spectrum as well as enhancement of the noisy speech. A 

sampling frequency of 16 kHz was used and the parameters 

used for IMCRA were given in [2]. The signal was split up 

into frames of length 512 samples and a window overlap 

factor of 50%. A speech utterance was obtained from the 

TIMIT [11] database and degraded with F16 cockpit noise 

and car interior noise. For these results, a speech utterance 

of length 40,000 samples was used to allow close examina-

tion and comparison of ENET to the basic IMCRA. These 

noise sources were obtained from the Noisex92 [12] data-

base.  

The superiority of ENET at noise estimation is demon-

strated in Figure 4. A speech signal corrupted with car inte-

rior noise was input into both the IMCRA and the ENET 

algorithms at SNR level of -10 dB. Under these heavy noise 

conditions, both methods perform good noise tracking at 

frequency bin 5 (k=5) as shown by their periodograms in 

Figure 4(a). However, examinations of other parts of the 

spectrum reveal that the basic IMCRA is unable to track 

changes in the noise spectrum. An example of this is shown 

in Figure 4(b) for the first bin (k=1). It is known that this bin 

contains large speech spectral peaks and therefore the basic 

IMCRA does not update the noise spectrum. This occurs 

when the ratio of the speech power to the noise power is 

large indicating a high probability of speech presence, p(k,i) 

from (4) and (6).  However, due to the separation of the 

strong speech segments, the ENET technique enables im-

proved tracking of the noise and therefore provides a better 

noise estimate.   

Quantitatively, noise estimation algorithms may be 

compared by computing the relative estimation error evalu-

ated over N frames as given by: 

( ) ( )

( )

2

1

2
0

ˆ , ,
1

Error  = 
,
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k
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i d

k

k i k i

� k i

λ λ

λ

−

=

 − 
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∑
∑

∑
 (10) 

where ( )ˆ ,d k iλ is the noise estimated from the algorithm 

being tested and ( ),d k iλ  is the ideal noise spectrum. Table 1 

shows the Errorest obtained for both methods tested under 

various SNR levels and different non-stationary noise types. 

It is clear that ENET performs better estimation as it achieves 

a significantly lower estimation error, especially in the case 

of car interior noise which has a low-pass characteristic. 

The OM-LSA speech estimator (8) was used to perform 

enhancement of the noisy speech output from both the basic 

IMCRA and the ENET system. In order to assess the relative 

performance of this new approach for speech enhancement, 

different subjective and objective assessment measures can 

be used. Subjective measures include Mean Opinion Score 

(MOS) and Diagnostic Acceptability Measure (DAM). Ob-

jective measures include the widely used Segmental SNR 

(SegSNR), Weighted Slope Spectral (WSS) distance, Log-

Likelihood Ratio (LLR) and the more recent Perceptual 

Evaluation of Speech Quality (PESQ). However, recent stud-

ies in [13] revealed that the SegSNR does not have as high a 

  
(a) 

 
(b) 

Figure 4 – Comparison of noise estimation periodograms using 

basic IMCRA and ENET methods for speech contaminated with 

car interior noise at -10 dB. (a) Tracking at freq. bin k=5 (b) Track-

ing at freq. bin k=1 

 

correlation with signal and overall quality when compared to 

other measures such as LLR and PESQ. Therefore, the rating 

from the composite measure [13] for measuring overall qual-

ity (COVL) which accounts for both signal and background 

noise distortion will be presented for evaluation of ENET. 

This quality index lies in the range [1 5] and is given by: 

        COVL=1.594+0.805PESQ-0.512LLR-0.007WSS       (11) 

Table 2 presents examples of the improved quality of 

speech enhancement obtained by the ENET approach for 

speech enhancement as opposed to the previous full-band 

IMCRA method. These enhancement results were obtained 

from speech signals contaminated with F16 and car interior 

noise respectively. They demonstrate that the full-band ap-

proach for enhancement is inferior to ENET in low SNR, 

non-stationary adverse conditions. Listeners appear to be 

particularly sensitive to speech distortion [13] and it was 

found that the new algorithm gives the desired significant 

improvement. This occurs due to the separation of the noisy 

speech which allows better speech estimation in each of the 

two bands that are formed. 
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 Estimation Error 

F16 Car Interior Noise 

Input SNR (dB) IMCRA ENET IMCRA ENET 

8 4.93 4.54 90.67 39.37 

4 4.55 4.05 91.16 1.28 

0 4.38 3.79 91.57 5.63 

-4 4.28 3.65 91.83 0.97 

-8 4.22 3.60 91.99 0.77 

Table 1 – Relative estimation error (Errorest) for noise tracking for 

basic IMCRA and the ENET methods under varying SNR condi-

tions and noise sources 

 Composite Overall rating 

F16 Car Interior Noise 

Input SNR (dB) IMCRA ENET IMCRA ENET 

10 2.96 3.01 4.20 4.35 

6 2.56 2.67 3.96 4.01 

2 2.19 2.28 3.67 3.82 

0 1.97 2.05 3.50 3.65 

-2 1.70 1.82 3.33 3.52 

-6 1.20 1.29 3.01 3.29 

-10 1.00 1.00 2.65 2.88 

Table 2 – Comparison of signal quality using the composite overall 

rating (COVL) under varying SNR conditions and noise sources 

The ENET approach was shown to be more effective 

than conventional techniques since it yields improved noise 

estimation and superior quality of the enhanced speech.  The 

frequency characteristics of the contaminating noise deter-

mine the value of M from (5). This allows the separation of 

the signal space into the two bands of stronger speech com-

ponents with noise and weaker speech components with re-

sidual noise. In the case of the lower frequency car interior 

noise, M was selected as 8. The F16 noise had dominant 

spectral peaks at higher frequencies and therefore a value of 

2 was chosen for M. Although Errorest was used for the quan-

titative assessment of the noise tracking, there are some defi-

ciencies in using MSE for evaluating relative estimation per-

formance. MSE is sensitive to outliers and also does not 

place relevant emphasis on over-estimation and under-

estimation errors, which have different consequences for the 

speech estimation [1]. 

6. CO	CLUSIO	 

The basic IMCRA technique is effective at updating the 

noise spectrum by applying recursive averaging. However, 

the results demonstrate that the new ENET system performs 

better at noise tracking and also provides lower estimation 

errors. This technique has also been shown to yield im-

provements for speech enhancement systems by providing 

superior signal quality. 

The time-varying, frequency-dependent smoothing fac-

tor used in recursive averaging during noise estimation varies 

with speech presence probability, and thus allows noise spec-

tral updates even during speech activity. However, when the 

ratio of the speech power to the noise power is large, the es-

timation procedure is unable to track changes in the noise 

spectrum. As seen from the analysis presented, after decom-

posing the signal into its IMFs using the EMD, ENET is able 

to separate the signal space into two bands. One band has 

stronger speech components and noise and the other has 

weaker speech components and residual noise.  Integration of 

this new approach into noise estimation and speech en-

hancement systems has shown that it can provide better per-

formance for noise tracking and speech enhancement, in non-

stationary and low SNR conditions.  
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