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ABSTRACT
We introduce a representation for rhythmic patterns that is
insensitive to minor tempo deviations and that has well-
defined behavior for larger changes in tempo. We have com-
bined the representation with an Euclidean distance measure
and compared it to other systems in a classification task of
ballroom music. Compared to the other systems, the pro-
posed representation shows much better generalization be-
havior when we limit the training data to songs with different
tempi than the query. When both test and training data con-
tain songs with similar tempo, the proposed representation
has comparable performance to other systems.

1. INTRODUCTION

Together with timbre and melody, rhythm is one of the basic
properties of Western music. Nevertheless, it has been some-
what overlooked in the music information retrieval commu-
nity, perhaps because rhythm is a quite abstract concept that
is difficult to describe verbally. A manifestation of this is
that in an online music tagging game, Mandel noted that ex-
cept for the occasional use of the word “beat”, hardly any
tags were describing rhythm [1]. This suggests that a com-
putational measure of rhythmic distance could supplement a
word-based music search engine quite well. An indication
that rhythmic similarity has been largely neglected is the au-
dio description contests that were held in conjunction with
the International Conference on Music Information Retrieval
(ISMIR) in 2004 to compare the performance of different al-
gorithms [2]. Among these evaluations was an automated
rhythm classification task, where [3] was the only partici-
pant. While other tasks such as genre classification were
quite popular and have recurred in the Music Information
Retrieval Evaluation eXchange (MIREX) as a direct continu-
ation of the ISMIR 2004 evaluation, the rhythm classification
task has to date not been repeated. Fortunately, the ballroom
music used for the evaluation has been released (see Table 1
and Figure 1).

Some of the first systems for rhythm matching were de-
scribed by Foote et al. [4], who used a self similarity ma-
trix to obtain a beat spectrum that estimates the periodicity
of songs at different lags; Paulus and Klapuri [5] who among
others use dynamic time warping to match different rhythms;
and Tzanetakis and Cook [6] who used an enhanced autocor-
relation function of the temporal envelope and a peak pick-
ing algorithm to compute a beat histogram as part of a more
general genre classification framework. More recent systems
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Figure 1: Distribution of tempi for the different rhythmic
styles in the ballroom dataset. For the three most common
number of beat per minutes (BPMs), the value is shown.

include [3,7–9]. Seyerlehner et al. also use a measure of dis-
tance between rhythmic patterns, although with the purpose
of tempo estimation [10]. For a review of rhythm description
systems, see e.g. [11].

Several authors have observed that tempo is an important
aspect of matching songs by rhythm [8, 12, 13]. Using the
Ballroom dataset (see Table 1 and Figure 1), Gouyon reports
a classification accuracy of 82% from the annotated tempi
alone, although the accuracy decreases to 53% when using
estimated tempi [14]. Peeters reports that combining rhyth-
mic features with the annotated tempi typically increases
classification accuracy by around 15% [8]. Seyerlehner et al.
have gone even further and have shown that a nearest neigh-
bor classifier that matches the autocorrelation function of the

Table 1: Distribution of rhythmic styles and training/test split
for the music used in the ISMIR 2004 rhythm classification
contest. The set consists of 698 clips of ballroom music from
http://ballroomdancers.com/.

Style Num. clips Training # Test

Cha-cha-cha 111 78 33
Jive 60 42 18
Quickstep 82 57 25
Rumba 98 69 29
Samba 86 60 26
Tango 86 60 26
Viennese Waltz 65 45 20
Waltz 110 77 33
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Figure 2: The 60 exponentially distributed bands the auto-
correlation values are merged into.

envelope performed on par with state of the art tempo in-
duction systems [10], suggesting that tempo estimation can
be considered a special case of rhythmic pattern matching.
Davies and Plumbley [15] take the opposite approach and
use a rhythmic style classifier to improve tempo estimates by
letting the prior probabilities of different tempi be a function
of the estimated style.

Since rhythm and tempo are so critically linked, we pro-
pose a representation of rhythmic patterns that is insensitive
to small tempo variations, and where the effect of large vari-
ations is very explicit. The representation is based on the
melodic distance measures we presented in [16, 17], which
were designed to find cover songs, i.e. different renditions
of the same song. To make features insensitive to the tempo
variations that are inevitable when artists interpret songs dif-
ferently, we averaged intensities over exponentially spaced
bands, which effectively changes a time scaling into a trans-
lation. In this paper, we apply the same idea to a measure
of rhythmic distance. In Section 2, we describe the proposed
representation of rhythmic patterns. In Section 3, we use a
nearest neighbor classifier based on the Euclidean distance
between the proposed feature to evaluate the performance of
the representation on the ballroom dataset. In Section 4, we
discuss the results.

2. A TEMPO-INSENSITIVE RHYTHMIC
DISTANCE MEASURE

Our proposed rhythmic distance measure is inspired by [10],
which again is based on [18]. The first steps proceed as in
[10, 18]:
1. For each song, resample it to 8 kHz and split it into 32 ms

windows with a hop size of 4 ms.
2. For each window, compute the energy in 40 frequency

bands distributed according to the mel-scale.
3. For each mel-band, compute the difference along the

temporal dimension and truncate negative values to zero
to obtain an onset function.

4. Sum the onset functions from all mel-bands into a single,
combined onset function. If Pb(k) is the energy of the
b’th mel-band in the k’th window, the combined onset
function is given by ∑

b
max(0,Pb(k)−Pb(k−1)).

5. High-pass filter the combined onset function.

Figure 3: The resulting feature vector from a synthesized
MIDI file with duration 80%, 100% and 120% of the orig-
inal length, respectively. Note that the feature vectors are
merely shifted versions of each other.

6. Compute the autocorrelation function of the high-pass fil-
tered onset signal up to a lag of 4 seconds.

The autocorrelation function is independent of temporal on-
set, and it does not change if silence is added to the beginning
or end of a song. However, as argued by Peeters [8] it still
captures relative phase. While some different rhythmic pat-
terns will share the same autocorrelation function, this is not
generally the case. In particular, two rhythmic patterns build
from the same durations, (e.g. two 1

4 notes followed by two 1
8

notes compared to the sequence 1
4 , 1

8 , 1
4 , 1

8 ) do not in general
result in identical autocorrelation functions.

Unlike [10], who smoothes the autocorrelation function
on a linear time scale, we use a logarithmic scale. That is, we
split the autocorrelation function into the 60 exponentially
spaced bands with lags from 0.1 s to 4 s that are shown in
Figure 2. Viewing the energy of the bands on a linear scale
corresponds to viewing the autocorrelation function on a log-
arithmic scale. Changing the tempo of a song would result in
a scaling of the autocorrelation function along the x axis by
a constant, but on a logarithmic scale, this would be a simple
translation. This trick is used in e.g. [19] for fundamental fre-
quency estimation to obtain a representation where the dis-
tances between the fundamental frequency and its harmonics
are independent of the fundamental frequency. With the ex-
ponentially spaced bands, a small change of tempo does not
significantly change the distribution of energy between the
bands, while larger changes will cause the energy to shift a
few bands up or down. We collect the band outputs in a 60-
dimensional feature vector x that has the energy of the n’th
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Figure 4: Features from the ballroom dataset. Within each
style, the features are sorted by the annotated tempo. The
band with a lag that corresponds to the annotated tempo (i.e.,
120 bpm corresponds to 0.5 s) is indicated by the black, ver-
tical lines. The 60 bands along the x axis are denoted by lag
time rather than index.

band as its n’th component, (x)n. As the final step in the
feature extraction process, we normalize the vector to have
unit Euclidean norm. In Figure 3 and 4, we have shown the
proposed feature extracted from the same MIDI file synthe-
sized at three different tempi and from the ballroom dataset,
respectively.

With 60 bands, the effective bandwidth of each band ex-
tends ±3% from the center frequency. Since a 3% change
of tempo is hardly noticeable, in the evaluation we extend
the permissible range of tempi by also searching for shifted
versions of the feature vectors. Specifically, when we search
for the nearest neighbor to a song with feature vector xm, we
find the song whose feature vector xn is the solution to

argmin
n

min
j∈{−1,0,1}

‖xm
j−xn‖ (1)

where xm
j is xm shifted j steps, i.e.,

xm
j =


[(xm)2 (xm)3 · · · (xm)60 0]T for j =−1,
xm for j = 0,
[0 (xm)1 (xm)2 · · · (xm)59]T for j = 1.

(2)

To obtain something similar with the linear autocorrelation
sequence, we would need to resample it to different tempi.
However, since the displacement of a peak at lag k is propor-
tional to k, the number of resampled autocorrelation func-

Figure 5: Rhythmic style and tempo classification results
when allowing the distance measures to match on tempo.
From left to right, the distance measures are our proposed
tempo insensitive distance measure, the linear version from
[10], the Fluctuation Patterns from [20], the modified version
of the Fluctuation Patterns from [10], and finally the absolute
difference between the songs’ ground truth tempi.

Figure 6: Rhythmic style and tempo classification results
when ignoring potential nearest neighbors with the same
style and similar in tempo to the query.

tions must be high to ensure sufficiently high resolution also
for large k.

A Matlab implementation of the proposed system is
available as part of the Intelligent Sound Processing tool-
box1.

3. EXPERIMENTS

Using the ISMIR 2004 ballroom dataset, we have compared
the linear autocorrelation as proposed by [10], our proposed
logarithmic version, the fluctuation patterns from [20], and
the modification to the fluctuation patterns also proposed
in [10]. As a reference, we have also used the absolute differ-
ence between the true tempi of songs. We have compared the
rhythmic distance measures using two different setups. First,
we have used the ballroom dataset as intended by finding the
nearest neighbor in the training set to each song in the test set
and see how often the rhythmic styles match. These results
are shown in Figure 5. Note that since we use the same par-

1http://isound.es.aau.dk/
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titioning into test and training as in the ISMIR 2004 contest,
results are comparable to [2], but although the numbers are
similar, the results are not directly comparable to e.g. [8–10]
who all use 10-fold cross validation.

To see how much these results depend on tempo, we
have repeated the experiment with the difference that when
searching for the nearest neighbor to a query song, we reject
candidates that have the same rhythmic style and a tempo
that is within 4% of the query (we use 4% similarly to [10]).
The results when incorporating this constraint are shown in
Figure 6. Test songs with Viennese Waltz had to be ignored
when computing the accuracy, since their tempi are all within
5% of each other.

4. DISCUSSION

By constructing a measure of rhythmic distance that is de-
signed to be insensitive to different tempi, we sacrifice a
few percentage points of performance in the baseline test in
Figure 5, where the linear autocorrelation function has the
highest performance. However, as seen in Figure 6, if the
songs in the training set with the same rhythmic style as the
query do not include songs that also share the same tempo,
our proposed distance measure significantly outperforms the
other distance measures. Due to the good generalization be-
haviour, we expect our proposed measure to supplement for
instance a timbre-based music search engine quite well.

Several aspects of the proposed distance measure are
somewhat arbitrary, leaving room for improvement. For ex-
ample, using other onset functions, e.g. the one used in [21],
or using more sophisticated classification algorithms, such as
support vector machines, might increase performance.

An interesting aspect of our proposed representation of
rhythmic patterns is that by simply shifting the feature vector,
it allows searching for slower or faster music with a similar
rhythmic structure. This could e.g. be useful if listening to
music when exercising, where the push of a button could find
similar, faster music that better matches ones pulse.
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