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ABSTRACT

Active contours or snakes are widely used for segmentation
and tracking. Multiple object tracking remains a difficult
task, characterised by a trade off between increasing the cap-
turing range of edges of the object of interest, and decreas-
ing the capturing range of other edges. We propose a new
external force field which is calculated for every object inde-
pendently. This new force field uses prior knowledge about
the intensity of the object of interest. Using this extra infor-
mation, this new force field helps in discriminating between
edges of interest and other objects. For this new force field,
the expected intensity of an object must be estimated. We
propose a technique which calculates this estimation out of
the image.

1. INTRODUCTION

The reliable estimation of objects’ features in images is a
time consuming task. It demands skilled technicians who
spend time identifying and measuring objects of interest in
the image. Although software drawing tools can ease this
work, when the measurements have to be monitored over
time this approach becomes impractical. The problem can
be complicated further if the objects of interest changes their
location and shape. Since we are interested in measuring
each object individually, the logical approach is to apply
techniques that on the one hand provide accurate segmen-
tation, with minimal human intervention, and on the other
reduce the complexity of the tracking process. Region based
segmentation techniques [1, 2, 3] require every frame to be
segmented and the resulting segments linked to those found
in the next frame. The disadvantage of this approach is that
in case of errors, for instance over-segmentation, the number
of segments in each frame might be different. In that case,
complex splitting and merging operation have to be imple-
mented to match objects correctly. Model based approaches
[4, 5, 6, 7] , that incorporate motion and shape information
into the segmentation process, provide a more solid frame-
work when a suitable representation of the object of interest
is available. We choose the active contour framework for this
work because it allows the integration of region and contour
constraints and avoids the problems of the afore mentioned
techniques. The number of objects in every frame remains
constant and the segmented contours in one frame can be
used as initial contour in the next. For objects in isolation
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this initial contour will converge towards the object’s new
location and deform to match the object’s new shape.

However when objects with different contrast lay close
to each other, the contour corresponding to the object with
lower contrast will be attracted to the object with higher con-
trast. This behavior is due to the nature of active contour
formulation, that drives the contour toward regions with high
contrast. To cope with this problem, we propose a new ex-
ternal force field, i.e. Intensity Gradient Vector Flow field.
This force field is calculated for every object separately. It
combines edge strength and expected intensity of the object
of interest, therefore increasing the possibilities that the cor-
responding contour will converge correctly.

This paper is arranged as follows. The next section pro-
vides a detailed description of active contours. Both the clas-
sical and gradient vector flow snakes are explained. In sec-
tion 3 our proposed algorithm is presented. Section 4 shows
an example of tracking leafs in a sequence of thermal im-
ages. This example is compared to other snake formulations.
Finally, results are discussed in section 5.

2. ACTIVE CONTOURS

2.1 Snakes
The classical snake model proposed by Kass et al. [4],
defines the active contour as a parametric curve, r(s) =
(x(s),y(s)), that moves in the spatial domain until the energy
functional in Eq. 1 reaches its minimum value.

Esnake =
∫ (

Eint(r(s))+Eext(r(s))
)

ds. (1)

Eint and Eext represent the internal and external energy, re-
spectively. The internal energy enforces smoothness along
the contour. A common internal energy function is defined
as follows:

Eint(r(s)) =
(

α | r′(s) |2 +β | r′′(s) |2
)
/2 (2)

where α and β are weighting parameters, r′ and r′′ are the
fist and second derivative of r(s) with respect to s. The first
term, also known as tension energy, prevents the snake to re-
main attracted to isolated points. The second term, known
as bending energy, prevents the contour of developing sharp
angles. Constraints based on more complex shape models,
such as Fourier descriptors, have also been reported in liter-
ature [8, 9].

The external energy is derived from the image, so that the
snake will be attracted to features of interest. Given a gray
level image I(x,y) , a common external energy is defined as:
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Eext(I(x,y)) =− | ∇I(x,y) |2 (3a)

or
Eext(I(x,y)) =−

∣∣∣∇(Gσ (x,y)∗ I(x,y)
)∣∣∣2 (3b)

where ∇ is the gradient operator, Gσ (x,y) a 2D Gaussian ker-
nel with standard deviation σ and where ∗ is the convolution
operator.

Minimizing the energy function of eq. 1 results in solving
the following associated Euler-Lagrange equations:

α
d2x(s)

ds2 −β
d4x(s)

ds4 −
∂Eext

∂x
= 0 (4a)

α
d2y(s)

ds2 −β
d4y(s)

ds4 −
∂Eext

∂y
= 0 (4b)

This can be seen as a force balance equation:

Fint +Fext = 0 (5)

These equations can be solved using gradient descent by
treating r(s) as a function of time, i.e. r(s, t). The partial
derivative of r with respect to t is then

dx(s, t)
dt

= α
d2x(s, t)

ds2 −β
d4x(s, t)

ds4 − ∂Eext

∂x
(6a)

dy(s, t)
dt

= α
d2y(s, t)

ds2 −β
d4y(s, t)

ds4 − ∂Eext

∂y
(6b)

When the snake stabilizes, i.e. when an optimum is found,
the terms dx(s,t)

dt and dy(s,t)
dt vanish.

2.2 Gradient Vector Flow
The external force field defined in the previous section re-
quires a good initialization, close to the object boundary, in
order to segment the object. This limitation is caused by the
nature of the external force field, whose vectors point towards
the object only in the proximity of the object’s boundary. As
we move away from the boundary the external fields rapidly
become zero, therefore reducing the possibilities that a con-
tour located in such regions will converge correctly. To over-
come this problem, Xu and Prince [10] proposed another ex-
ternal force field v(x,y) = (u(x,y),v(x,y)). This vector field
minimizes the following energy functional:

EGV F(u,v) =∫∫
µ

(du
dx

2
+

du
dy

2
+

dv
dx

2
+

dv
dy

2)
+ |∇ f |2| v−∇ f |2 dxdy

(7)

where µ is a nonnegative parameter expressing the degree of
smoothness of the field v and where f is an edge map, e.g.
| ∇I |. The first term of Eq.7 keeps the field v smooth,
whereas the second term forces the field v to resemble the
original edge force in the neighborhood of edges. This new
external force is called gradient vector flow (GVF) field. The
GVF-field can be found by solving the following associated
Euler-Lagrange equations:

µ∇
2u−

(
u− ∂ f

∂x

)(
∂ f
∂x

2

+
∂ f
∂y

2)
= 0 (8a)

µ∇
2v−

(
u− ∂ f

∂y

)(
∂ f
∂x

2

+
∂ f
∂y

2)
= 0 (8b)

where ∇2 is the Laplacian operator.

3. INTENSITY GRADIENT VECTOR FLOW

The GVF field formulation effectively increases the range an
object can attract a contour, consequently relaxing the initial-
ization constrains. However, when an image contains mul-
tiple objects the GVF field can bias the contour evolution
towards the objects with higher contrast. We illustrate this
problem in Fig. 1 where two objects, a high contrast square
and a low contrast circle, their gradient and the image GVF
field are depicted. As can be seen in Fig. 1.b the square
displays the stronger gradient. Also note in Fig. 1.c that
in the region located between the objects, the resulting GVF
field points toward the square object. This occurs because
the GVF field equations assign non-zero values to regions
with no gradient data. If a contour is initialized at a small
distance from the circle, the segmentation can yield unpre-
dictable results such as in Fig. 1.d. A simple strategy to
solve this problem is increasing the weighting parameters in
Eq.2. This will reduce the search space of the contour and the
possibilities that it gets trapped under the influence of neigh-
boring objects. The negative aspect of this approach is that it
also reduces the possible shapes that can be segmented.

Another possible solution is limiting the influence of ob-
jects far away. This strategy however needs a good initial-
ization. This is not always feasible in tracking applications,
where the resulting contour of frame t is used as an initializa-
tion of the contour of frame t + 1. So the GFV-force should
range as far as the objects of interest can move between two
subsequent frames. Another disadvantage of tracking is the
risk of error propagation, namely that wrong detected seg-
ments will be used as initialization in the next frame.

To cope with this problem two schemes have been re-
ported: one focused on solving the multiple object problem
and the other focused on solving the motion problem. In the
first approach, Tang [11] and Cohen [5] propose to manipu-
late the external force field so that gradients towards a certain
direction are favored. This approach requires a good estima-
tion of object’s location. In the second approach, the snake
tries to anticipate the new location of the object [9, 12, 13],
therefore a better initialization is assumed and the influence
of other objects limited. These algorithms utilize some form
of prior knowledge about the motion, in practice this knowl-
edge is not always available which limits the number of ap-
plications.

The solution we propose belongs to the first group, but
instead of manipulating the force field based on location, we
assume to have prior knowledge about the intensity of the
object. In the remaining of this section we will first define
the operators necessary for our technique. Then our pro-
posed technique itself will be explained. We conclude with a
method to estimate the expected intensity.

3.1 Neighboring intensity
In order to incorporate object features into the segmentation
process we evaluate the object intensity values. We decided
to use intensity information because it is more reliable than
edge data to characterize the objects with a fairly homoge-
neous interior. A problem in this approach is the estimation
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(a) Initialization of snake (b) gradient

(c) GVF-force field (d) segmentation using a GVF-snake

Figure 1: Example of segmenting the circle using a GVF-snake.

of intensity values at the object’s boundary. Different ob-
jects can have similar values, particularly in very noisy im-
ages. We propose the neighboring intensity operator Ψ to
overcome such problem:

Ψb(x,y, I) = I
(

x+b
∂ I(x,y)

∂x
,y+b

∂ I(x,y)
∂y

)
(9)

It samples the intensity of pixels located at distance b from
the x.y position. The sign of b indicates if the measure is
taken in the direction of the gradient or its opposite.

3.2 Intensity Model
We assume that intensity of an object Z can be modeled us-
ing a Normal probability distribution i.e. P(Z) ∼ N(µ,σ2)
with a constant σ2 for all frames. The σ2 value can be esti-
mated during initialization, while the µ values is updated in
every frame. The ability of the contour to discriminate be-
tween objects using intensity information, depends on these
models. If the µ of different objects are too close to each
other, or the σ2 is too large, the proposed method might not
work.

3.3 Intensity Gradient Vector Flow
Once the intensity model parameters are estimated, we can
assign to each pixel the probability that it belongs to a given
object. Since the boundary pixels are of major importance,
but as mentioned before they do not provide a reliable mea-
sure of the object intensity, we estimate the corresponding
probability using the output of the neighboring intensity op-
erator instead.

Γ(x,y, I,E[I]) = max
{

P(z = Ψb(x,y, I) | µ = E[I])
P(z = Ψ−b(x,y, I) | µ = E[I]))

(10)
Where E[I] is the expected intensity of the object of inter-
est. So the mean of the objects intensity model is defined as
E[I]. Using the neighboring intensity operator, we look in
both directions of the gradient. This is because we consider

the possibility that the object’s surroundings can be darker or
lighter than the object itself. The parameter b is set to ensure
that the neighboring intensity operator samples pixels of the
objects interior. The Ψ operator looks for example for a dis-
tance of two pixels in the direction of the gradient. Instead of
choosing b constant, it might be interesting to make b vari-
able for each pixel, i.e. let b be defined in function of the
gradient strength.

This new intensity map can be combined with the GVF
method. In eq.7 we redefine the edge map for every object,
i.e.

fE[I] =| ∇I | Γ(x,y, I,E[I]) (11)

This new external force is called intensity gradient vector
flow (IGVF) field.

3.4 Intensity Estimation

The expected intensity of an object could be predicted out of
the result of previous frames. An other possibility is estimat-
ing it based on the image and the initialization of the snake.
If the initialization is not too far from the true object, we can
estimate the intensity based on the intensity of the initializa-
tion. To discard the influence of background or other objects,
we can use the median or a weighted mean as an estimation
of the expected intensity. If the object initialization area is
more outside the object than inside, these techniques will re-
sult in wrong estimations.

4. RESULTS

To test our method we have segmented a sequence of images
which monitored a sugar beet seedling plant. This time-lapse
sequence was captured with a thermal camera. These thermal
images are grayscale images, such as can be seen in Fig.2.a.
Every hour a new image was taken. In this sequence the 4
leafs of the plant all move in different directions, at different
speeds. Since this movement does not seem to have a clear
motion model, we can not incorporate any prior knowledge
about the motion in our tracking methods. There is however
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an intensity difference between the two big leafs and the two
small leafs.

As an initialization for the snakes in the first frame, a wa-
tershed algorithm [1] was used. In Fig.2.b an example of this
initialization is shown. In figure c the gradient of the thermal
image is shown. As can be seen, prevails the gradient of the
two big leafs the image, specially near the stalk of the ’yel-
low leaf’. Finally, Fig.2.d shows the Γ image of the leaves,
as expected intensity, the median of the yellow contour in
Fig.2.b was chosen. Here the small leaves prevail the image.

In Fig.3 the segmentation results are shown. In Fig.3.a-b
the results of classical snakes are shown. In the first example
the strong attraction of the big leafs is visible. Even though
the error is still small, the yellow contour is already attracted
away from its true contour towards the big leaf. Fig.3.b does
not suffer from this problem because it puts high constraints
on the shapes of the snake. It achieves this by defining high
values for α and β in Eq.2. In Fig.3.c the intensity-edge map
is shown. The contours of all four leaves have similar edge
strengths. This results in a good segmentation as can be seen
in Fig.3.d.

In order to quantitatively evaluate the proposed tech-
nique, a full sequence was manually segmented and com-
pared to the segmentation results for both the proposed and
the classical active contours. The provided ground truth con-
sists of 54 images, all containing four leaves. The Dice coef-
ficient is used as a similarity measure such as is done in [14].
Given Sr,Strue, the regions defined by respectively r and the
true contour, the Dice coefficient is defined as:

DC(Sr,Strue) =
2Area(Sr∩Strue)

Area(Sr)+Area(Strue)
(12)

The Dice coefficient returns 1 if the segments are identical,
and 0 if they are totally different. The proposed method re-
sults in an average Dice coefficient of 0.89 with an average
improvement of 0.05 compared to the classical snake with
the same parameters.

This improvement might not seem spectacular, but note
that every error in a frame has the chance of propagating
to other frames, if the active contour framework is used for
tracking. Fig.4 shows the tracking results for frame 7 of the
same sequence as Fig.3. Both GVF-snakes result in wrong
segments. In Fig.4.a the error of Fig.3.a has propagated.
Where as in Fig.4.b the consequence of the strong constraint
on the shape is visible. As can be seen in Fig.4.d, the IGVF-
snake does not have problems with multiple objects, nor with
the shape of the objects.

5. DISCUSSION AND CONCLUSION

In this paper a new variant on GVF-field , intensity gradient
vector flow field, is defined. This new force field takes both
gradient and the expected intensity in consideration. The
IGVF-field is useful for tracking multiple objects, where the
objects of interest have different intensities. The power to
discriminate between different objects using IGVF, depends
on how different the object’s intensities are. The expected in-
tensity of an object can be estimated out of the initialization.
If however the initialization of the object is too far, there exist
a risk of moving towards wrong objects. This error mainly
occurs when the object initializations area is more outside
the object than inside, what results in a wrong estimation of
the intensity. To omit this problem the expected intensity

can be predicted out of previous frames. Some future work
could involve the testing of the proposed method for the seg-
mentation of objects with a constant texture. The IGVF-field
for this application could be build on the response of a tex-
ture filter instead of the intensity image. We believe this new
technique can work in a wide range of applications where the
classical active contours have failed.
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(a) An example of
a thermal image

(b) Initialization
using watershed

(c) The gradient
of Fig. a

(d) The Γ image
derived from yellow region

Figure 2: Frame 1 of a thermal time lapse sequence, and some of its preprocessing steps.

(a) GVF-snake, with
low internal energy

(b) GVF-snake, with
high internal energy

(c) intensity edge map
see eq.(11)

(d) IGVF-snake, with
low internal energy

Figure 3: Example of segmentation of frame 1 using different active contours

(A) GVF-snake, with
low internal energy

(b) GVF-snake, with
high internal energy

(c) intensity edge map
see eq.(11)

(d) IGVF-snake, with
low internal energy

Figure 4: Example of tracking, results for frame 7 using different active contours
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