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ABSTRACT 

This paper presents an original method to separate the 
residential electric load into its major components. The 
method is explained in the particular case of space-heating, 
which is the most consuming electric end-use in France1. 
This is a source separation problem from a single mixture.  
The components to be retrieved are square signals 
characterized by a periodic regulation and a slowly time-
varying duty cycles. A point process is used to model the 
electric load as a configuration of possibly overlapping  
square signals, given the priors on magnitude, duty cycle 
variations and the regulation periodicity. This stochastic 
process is simulated using a Reversible Jump Markov 
Chain Monte Carlo procedure. A simulated annealing 
scheme is used to achieve the posterior density 
maximization. First results on real data provided by 
Electricité de France are quite encouraging.  

1. INTRODUCTION  

1.1. Background on household electric load 
monitoring 

The electric power industry and consumers recently face 
many challenges such as energy saving, market 
deregulation, power quality and greenhouse gas emissions 
reducing. Accurate and reliable information about the 
nature and the state of the electric systems will undoubtedly 
be helpful to meet these challenges. Actually, a good 
knowledge of the electric load and the targeted appliances 
help consumers understanding their bills and better control 
their consumption. It also provides utilities with detailed 
usage profiles of their customers, which is an efficient 
means to help in levelling peaks load and in planning future 
capacity. 
A non-intrusive and economical solution may rely on 
information extracted from electric consumption measured 
at a centralized easily accessible part of a distribution 
network, namely the electricity meter. 

                                                 
1 70% of the whole households electric consumption in 
France (ADEME, 2005). 

Non-intrusive electric load monitoring has been subject to 
several approaches over the last twenty years. General 
overviews can be found in [1, 2, 3]. The available solutions 
require measurements of the active and the reactive power, 
which carry out the finger-prints of the electric appliances. 
They are mostly made up of three steps. Event detection 
determines the appliances operating schedule. Load 
identification uses steady state powers and transient patterns, 
if available, to recognize the elementary components. 
Energy estimation provides a breakdown of the daily energy 
into the major end-uses. As the structure of the electric load 
is very complex because of the diversity of electrical loads 
and of the consumers’ habits, classical methods requires 
measurements of three voltages and currents with a specific 
device plugged in the electricity meter. 
We propose a novel approach using only the active power. 
The measured power is a linear additive mixture of an 
unknown number of elementary signals. Our aim is to 
provide the most likely decomposition of the daily active 
power without any intrusion. We propose to incorporate 
knowledge on the primitives to be extracted as a priori 
knowledge. Our approach allows going further. 

1.2. Problem statement 

In this paper, we focus on the space-heating load 
decomposition. The observed signal is the active power �(�). It is sampled at the sampling rate Te=2s. This 
observation is a sum of an unknown number K of periodic 
square waves ��  (1 ≤ � ≤ 	). Each component is 
described by its period 
�� and its magnitude ��.  
 
The observation is modelled as follows (equation1): 
 ∀�, �(�)  =  ∑ ��(�) + �(�)����  (1) 
where b is an additive Gaussian noise. Each k th convector is 
defined on a compact support ����, ����.  
A convector period 
�� is almost constant and is defined as 
follows (equation 2) 
 
�� =  
�� +  �� (2) 
where 
00 ∈  �40, 80� is the theoretic periodicity and � is 
an additive noise, modelled with a zero mean Gaussian 
law. 
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An example of a convector signal is given in Figure 1. 
Notice that the width of the observed squares l varies over 
time. Time-variations of these parameters might be 
analyzed through the variations of the duty-cycle defined 

as follows   = ! 
��" (Figure 1, where n represents the 

index of the squares). 
The repartition of the duty-cycle variations (absolute 
values) obtained for a given convector is illustrated in 
Figure 2. The variation between two successive squares is 
constant. We propose to use a first autoregressive model to 
this parameter. 
Two samples of space-heating load are presented in Figure 
3, Figure 4 and Figure 5. In the first case, two 
components are operating simultaneously. Even if the 
number of components is very small, the global load 
cannot be easily decomposed, especially because of the 
convector saturation  = 1 (Figure 3, double arrow). 
Another source of complexity of this problem is the 
interaction between the elementary components. The start 
up of a square and the shutdown of another one might 
occur at the same time. Real data show that this 
synchronism between convectors is realistic and occurs 
frequently (Figure 4, Figure 5). 
Moreover, magnitudes and periodicities of different 
components might have the same value, which makes the 
source separation problem quite difficult. 
We aim at extracting a plausible configuration of periodic 
square waves given the global consumption and priors. The 
electric load might be seen as a realization of a marked point 
process [4] of squares defined by a density function to be 
designed given priors on the duty cycle variations, the 
periodicity and the magnitude of a convector. The stochastic 
process is sampled using a Reversible Jump Markov Chain 
Monte Carlo (RJ-MCMC) sampler. A simulated annealing 
algorithm [5] achieves the posterior density maximization: 
an estimation of the model parameters in a Bayesian 
framework is performed this way. 
Some definitions and notations are presented is section 2. 
In section 3, the estimation problem is presented in a 
Bayesian framework. The optimization algorithm and 
some details on the proposition kernels introduced in the 
MCMC sampler are described in section 4. Finally, first 
results on real data and future works are given in section 5. 
 
 

 

Figure 1- Example of a convector electric load (T00=40s,  
A=1150 W) 

 

Figure 2- Duty-cycle repartition obtained for one 
convector (operating during 82 min) 

 
Figure 3- Electric load of two convectors operating 

simultaneously (T00=80s for one convector Conv1 and 
T00=40s for the other one: Conv2) 
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Figure 4- Individual electric loads of three convectors 

operating simultaneously T00 = 40s for Conv1 and Conv3, 
T00 = 80s for Conv2. 

 

Figure 5- Electric load of three convectors operating 
simultaneously 

 

Figure 6 - Model of a one-square convector 

2. POINT PROCESS FRAMEWORK FOR 
ELECTRIC LOAD MONITORING 

Point processes models have been introduced for object 
extraction from remotely sensed images [6]. Marked point 
process models provide a natural setup for the inclusion of 
prior knowledge on the components of a given observation: 
parsimony, patterns structure and/or morphology, etc. 
These models were widely used in image processing [6,7] to 
extract complex objects in a scene. They have recently been 
used in roads [8], buildings [9] or tree crowns [10] 
extraction. We refer to [6, 11] for mathematic definitions and 
more details about point processes. 
In this work, we are interested in the case study of space-
heating electric load. The components to be extracted are 
the convectors, which might be considered as a set of 
squares. Notice that the convectors may overlap. Point 
processes models are adapted in the case of one-
dimensional signals where the objects interact with each 
other and may overlap.  
More precisely, the electric load decomposition problem 
requires to introduce two stochastic processes: a point 
process where the points are the convectors and a marked 
point process where the points are the squares and the 
marks are the square parameters. The proposed model is 
explained in the following subsections. 

2.1. The state space 

The observed signal  P is defined on 
 = �0,   
#$%�. It is 
the sum of the convectors active powers. Each convector 
might be considered as a set of squares. 
Each square u of a given convector c is entirely defined by 
three parameters (t, l, A) which are respectively the 
beginning time, the square width and the square magnitude. 
Theses parameters belong to & = �!#'( , !#$%�  × ��#'( , �#$%�. The parameters minl and maxl  stand 
respectively  for the minimal and the maximal widths of 
any square. The magnitudes minA and maxA are 
respectively the minimal and the maximal nominal powers 
of any convector. These parameters are chosen based on 
information extracted from real data. The model of squares 
is illustrated in Figure 6.  
Let * = 
 × & be the state space of squares. Notice that the 
state space of squares is a subset of ℝ,. A configuration c of 
objects in S is an unordered list of objects in S, which can be 
written as - =  �.�, ./, … , .(�, where 1 ≥ 1 and ∀ 6,  .' ∈ *. 
Let 7( be the set of all n-squares configurations , i.e. 
 7( = 8- | - = �.�, ./, … , .(�:. (3) 
The set of all the configurations is 7 = ; 7(<(�� .  
The state space of possible solutions is defined as follows: > =  �? ⊂ 7, 1 ≤ |?| < +∞�. 
Each object x of E is a finite set of convectors. The electric 
load components estimation is a large combinatorial 
problem. It may be solved by minimizing an energy on the 
state space of convectors. Efficient algorithm helping the 
state-space exploration are required. In the next sub-section, 
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two point processes are used to model the squares and the 
electric load of convectors.  

2.2. Point processes for electric load modelling 

The electric load model is obtained through the definition of 
a stochastic process that describes the convectors and 
another one that describes the squares. 
Let C be the probability distribution of a Poisson point 

process and D be the intensity measure of this process 
defined on C. 
Consider a point process defined on C, i.e. an E-valued 
random variable. Each realization of X is a set of 
convectors. Given the reference probability distribution, a 
realization of X could be obtained in two steps. 
 Firstly, one draws the convectors number n from a Poisson 

distribution E( = eGH(I)  H(I)J
K! . Secondly, n independent 

convectors are generated with respect to the distribution  H
H(I). 
 
Given this distribution, one defines a Poisson process of 
probability distribution C on S. Let us consider a marked 
point process where the points belong to 
 = �0,   
#$%� and 
the marks are stochastic parameters that belong & =�!#'( , !#$%�  ×  ��#'( , �#$%�. A realization of this process 
is a finite set of squares (points in S), in other words a point 
in C. 
The observation �(�) (the space-heating active power) is a 
realization of a point process X defined by its density M(. ) 
with respect to the Poisson process probability distribution C. One might then build a Markov chain which converges in 
law to X. 
The process density satisfies the following equation 

 M(?) =  �
N  exp (−R(?)), (4) 

where Z is a normalizing constant and R(?) stands for the 
energy of the configuration ?. 

3. APPLICATION TO ELECTRIC SPACE-HEATING 
DECOMPOSITION  

Our aim is to estimate the configuration ? that maximizes 
the posterior density M(?|�) = M(?) given the active power 
Y. In a Bayesian framework, we need to build both an a 
priori  density and a likelihood term. 

3.1. Posterior density 

As mentioned above, in a Bayesian framework [12], the 
marked process density is given as follows 
 M(?)  ∝ MTU'VU(?) MW$X$(�|?), (5) 
where the a priori density MTU'VU(?) includes priors on the 
parameters to be estimated, and the likelihood MW$X$(�|?) of 
a configuration given the observed signal. 
The energy term is split into a likelihood term and a prior 
(regularization) term as follows: R(?) = RTU'VU(?) + RW$X$(?) 
The relationship between energy terms and density functions 
is given by equations 6. 

 
 Y MTU'VU(?) ∝ exp (−RTU'VU(Z))MW$X$([\|?) ∝ exp (−RW$X$(?))]  (6) 

 
Prior energy 
The regularization energy is defined by the following 
equation: 
 RTU'VU(?) = ∑ (RT(^) −_∈? `T(^)), (7) 
 
where RT(^) = abcTb(^) + adcTd(^) + aecTe(^) is a 
linear mixture of three regularization terms respectively on 
the magnitude A, the periodicity T0 and the duty cycle ρ. 
Given real data analysis results, these parameters are 
modelled with Gaussian laws.  
Let 
f and �g be respectively the period and the magnitude 
means of the convector c and hd, hb and he the standard 
deviations. The functions ψj are defined as following: 

 

kl
m
ln cTb(^) = ∑ (b(o)Gbg)p

/qrpo∈_
cTd(^) = ∑ (d(o)Gdf)p

/qspo∈_
cTe(^) = ∑ (e(�t�)/e(�)G�)p

/qvp�

] 

  
The function ̀  is introduced to maximize the number of 
squares per convector and penalize great number of one-
square convectors. The chosen function is defined as below: 

 `(^) = Y w if |^| = 1−z|^|/ otherwise]  
where w �1� z are pre-defined parameters.  
 
Likelihood energy 
This term measures the probability of data given a 
configuration of objects. Given the chosen model for space-
heating load, we propose to define this energy by the sum of 
each likelihood objects: 
 RW$X$(?) = ∑ ∑ R�(.)o∈__∈? , (8) 
 
The energy term Ul is designed as following: 

� The energy of a plausible square is negative. 
Otherwise, the energy of the proposed square is a 
positive convex function. 

� The gradient (on and off events) of a plausible 
square corresponds to a gradient of the observation 
in a pre-defined neighbourhood. 

The proposed likelihood energy definition requires a pre-
processing of the electric load. In fact, the events (start up 
and trip) of the whole electric load have to be matched. 

3.2. RJMCMC sampler and optimization algorithm 

The space-heating load is modelled by a point process X 
defined by its density M(?) with respect to the Poisson 
process of intensity D. A Markov chain (Xm) that converges 
to the distribution XΡ  is built using a RJ-MCMC samplers 
[13]. 
In this work, some jumping kernels (birth and death of a 
square) and non-jumping kernels (dilatation of the 
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magnitude or of the width of a given square, translation) are 
used to manage the chain transitions have been defined. 
The maximum a posterior, given by equation 9, 
 ?�b� =  �����Z? M(?)) (9) 
is obtained using a simulated annealing algorithm [5]. 

4. RESULTS ON REAL DATA 

The proposed model has been tested on real data gathered 
at two customers houses. In each case, the active powers of 
the elementary components have been also measured to 
evaluate the algorithms. Tests were carried on synthetic 
mixtures to evaluate the proposed model. Figure 7 presents 
results obtained for two convectors having nearly different  

 

 

Figure 7- Decomposition of two convectors operating 
simultaneously ( sTT 40  0201 == ): the measured signals 

(blue), the estimates (red and cyan). 

magnitude and the same periodicity of regulation. Their 
duty-cycles are also very close. 
This signal is decomposed into two components (Figure 4-
blue) where the periodicity is well estimated. The squares 
widths are quite well estimated.  
Other tests have been carried out during this study taking 
into account convector saturation and several objects 
interactions. The obtained results, which are quite 
satisfying, and more details on the convergence of the 
MCMC sampler will be given in future works. We notice 
that some verifications have been carried out to ensure the 
convergence of the implemented sampler. 

5. CONCLUSIONS AND FUTURE WORKS 

The electric load decomposition given the active power 
sampled at one second is a single source separation 
problem. The load components are some square waves 
characterized by some priors. In this work, a novel method 
to estimate these components using the marked point 

processes framework is proposed. These models were 
widely used in image processing and in model selection. 
In our application, such processes provide a unique model 
to any electric appliance avoiding a constrained approach 
based on a specific model per class of electric appliances. 
In this paper, the proposed model in the case of space-
heating load is described and the posterior density is 
defined. The RJMCMC sampler embedded with a 
simulated annealing scheme is implemented using some 
transition kernels. First results on real data are satisfying 
and show that the model is suitable to deal with objects 
interactions (events in our application). 
Some improvements could be proposed, such the hyper-
parameters of the prior energy estimation. In future works, 
more details on the implemented sampler and on the 
optimization algorithm will be detailed.  The proposed 
model will be extended to other electric appliances.  
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