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ABSTRACT Non-intrusive electric load monitoring has beenjscibto

This paper presents an original method to sepatate severgl approaches over the last twenty years. rélene
residential electric load into its major componenihe ©Verviews can be found in [1, 2, 3]. The availanéitions
method is explained in the particular case of spaeating, '€duire measurements of the active and the reapower,
which is the most consuming electric end-use iméea which carry out the finger-prints of the electrppaanpes.
This is a source separation problem from a singieture. 1 hey are mostly made up of three steps. Event tiatec
The components to be retrieved are square signafi€ermines the appliances operating schedule. Load
characterized by a periodic regulation and a slowitpe- !dent|f|§:at|on uses steady state powers and trangaterns,
varying duty cycles. A point process is used toehtite if avallablg, to recognize the elementary compasent
electric load as a configuration of possibly oveying ENerdy estimation provides a breakdown of the daigrgy
square signals, given the priors on magnitude, caytyle into the major end-uses. As the structure of teetat load
variations and the regulation periodicity. This ctastic 'S Very complex because of the diversity of eleatrioads
process is simulated using a Reversible Jump Markodd ©Of the consumers’ habits, classical methodsines)
Chain Monte Carlo procedure. A simulated annealingM€asurements of three voltages and currents vafeaific
scheme is used to achieve the posterior densilgfv'ce plugged in the electricity meter. _
maximization. First results on real data providey b Ve Propose a novel approach using only the aciweep

Electricité de France are quite encouraging. The measured power is a linear additive mixtureapf
unknown number of elementary signals. Our aim is to
1. INTRODUCTION provide the most likely decomposition of the dadgtive
power without any intrusion. We propose to incogper
1.1. Background on household electric load knowledge on the primitives to be extracted apriori
monitoring knowledge. Our approach allows going further.
The electric power industry and consumers recefaite 1.2. Problem statement

many challenges such as energy saving, market , )
deregulation, power quality and greenhouse gassionis [N this paper, we focus on the space-heating load
reducing. Accurate and reliable information abobe t decomposition. The observed signal is the activerepo
nature and the state of the electric systems willbubtedly ~Y(t)- It is sampled at the sampling ra&=2s. This
be helpful to meet these challenges. Actually, @dgo observation is a sum of an unknown number K ofqnm_
knowledge of the electric load and the targetediapges Sduare wavesy, (1 <k <K). Each component is
help consumers understanding their bills and bettetrol ~ described by its periof}, and its magnitudd,.

their consumption. It also provides utilities wittetailed o )

usage profiles of their customers, which is ancifit The observation is modelled as follows (equationl):
means to help in levelling peaks load and in plagtfiture vt,y(t) = Y=t vk () + b(t) (1)
capacity. wherebis an additive Gaussian noise. E&¢hconvector is

A non-intrusive and economical solution may rely ondefined on a compact suppty, t1].

information extracted from electric consumption swwad A convector periody,, is almost constant and is defined as
at a centralized easily accessible part of a Histion follows (equation 2)

network, namely the electricity meter. Tor = Too + & 2

whereT yg € {40,803} is the theoretic periodicity angl is
an additive noise, modelled with a zero mean Gauassi
law.

1 70% of the whole households electric consumption in
France (ADEME, 2005).

© EURASIP, 2009 1062



Notice that the width of the observed squdrearies over 10001
time. Time-variations of these parameters might be e
analyzed through the variations of the duty-cycidirsed S ool

as follows p = l/TOO(Figure 1, wheren represents the
index of the squares). . ‘ ‘

The repartition of the duty-cycle variations (ahbsel P oot e
values) obtained for a given convector is illugdatin ; ‘
Figure 2. The variation between two successive squares i %/ ]
constant. We propose to use a first autoregressogel to
this parameter.

Two samples of space-heating load are presentédyime 0l ,
3, Figure 4 and Figure 5. In the first case, two " ‘ ‘ ‘ ‘ ‘ ‘
components are operating simultaneously. Even & th ' :  (square indes) ° °
number of components is very small, the global loac

cannot be easily decomposed, especially becausbeof Figure 1- Example of a convector electric lodgh€40s,
convector saturatiorp =1 (Figure 3, double arrow). A=1150 W)

Another source of complexity of this problem is the ‘ ‘ ‘
interaction between the elementary components. stéu o0
up of a square and the shutdown of another onetmigt oof ]
occur at the same time. Real data show that thi
synchronism between convectors is realistic andurscc
frequently Figure 4, Figure5). ags| ; 0000000 |
Moreover, magnitudes and periodicities of different
components might have the same value, which mdies t = oo , .
source separation problem quite difficult.

We aim at extracting a plausible configuration efipdic

An example of a convector signal is givenRigure 1. 1200 ” F F F

0.03 -

square waves given the global consumption andspridre 002 an |
electric load might be seen as a realization ofeked point '
process [4] of squares defined by a density funct®m be oot} .
designed given priors on the duty cycle variatiothe
periodicity and the magnitude of a convector. Tioelsastic % R 2 o w0 50 %0
process is sampled using a Reversible Jump Mark@amnC r square index)
Monte Carlo (RJ-MCMC) sampler. A simulated anneglin Figure 2- Duty-cycle repartition obtained for one
algorithm [5] achieves thposterior density maximization: convector (operating during 82 min)
an estimation of the model parameters in a Bayesian
framework is performed this way. 1500k
Some definitions and notations are presented iSose2.
In section 3, the estimation problem is presentedai
Bayesian framework. The optimization algorithm and ™ ]
some details on the proposition kernels introduicethe F [
MCMC sampler are described in section 4. Finalisgtf s ConivCon
results on real data and future works are giveseation 5. 5 Comv 1000
: |
W i
-500 - w
-1000 U—

i I I i
[ 100 200 300 400 500 600
sec

Figure 3- Electric load of two convectors operating
simultaneouslyT,=80s for one convect@onvland
To=40s for the other on€onv2d
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Figure 5- Electric load of three convectors operati
simultaneously
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Figure 6 - Model of a one-square convector
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2. POINT PROCESSFRAMEWORK FOR
ELECTRIC LOAD MONITORING

Point processes models have been introduced facbbj
extraction from remotely sensed images [6]. Margetht
process models provide a natural setup for theisimh of
prior knowledge on the components of a given olzerm:
parsimony, patterns structure and/or morphology, et
These models were widely used in image processifg fo
extract complex objects in a scene. They have tigdeeen
used in roads [8], buildings [9] or tree crowns ][10
extraction. We refer to [6, 11] for mathematic diions and
more details about point processes.

In this work, we are interested in the case studgpace-
heating electric load. The components to be exdaetre
the convectors, which might be considered as aofet
squares. Notice that the convectors may overlapntPo
processes models are adapted in the case of one-
dimensional signals where the objects interact witich
other and may overlap.

More precisely, the electric load decompositionbbem
requires to introduce two stochastic processes:oiat p
process where the points are the convectors andrkech
point process where the points are the squarestland
marks are the square parameters. The proposed rizodel
explained in the following subsections.

2.1. Thestate space

The observed signaP is defined ol = [0, Tpu.]- It is
the sum of the convectors active powers. Each atarve
might be considered as a set of squares.
Each square of a given convectot is entirely defined by
three parameterst, (I, A) which are respectively the
beginning time, the square width and the squareninaie.
Theses parameters belong 3 = [Lyin, Lnax] X
[Amin, Amax]. The parameterslnand . Stand
respectively for the minimal and the maximal waltbf
any square. The magnitudesA,inand Apaxare
respectively the minimal and the maximal nominalveis
of any convector. These parameters are chosen lmsed
information extracted from real data. The modesqfiares
is illustrated inFigure 6.
LetS = T X M be the state space of squares. Notice that the
state space of squares is a subs&3ofA configurationc of
objects inSis an unordered list of objects $which can be
written as
c = {uy,uy, ..., u,}, wheren > land Vi, u; €8S.
Let C,, be the set of all-squares configurations , i.e.
Cp={clc={u,uy .., u}} ©))
The set of all the configurations@s= U;-, C,, .
The state space of possible solutions is definddllasvs:
E={x c(C,1<|x| <4}
Each objeck of E is a finite set of convectors. The electric
load components estimation is a large combinatorial
problem. It may be solved by minimizing an energytioe
state space of convectors. Efficient algorithm imgipthe
state-space exploration are required. In the ngxsection,



two point processes are used to model the squacksha
electric load of convectors. { forior(x) < exp (—Upyior (X))

faata(Pr|x) < exp (—Ugqeq (X)) (6)

2.2. Point processesfor electric load modelling

The electric load model is obtained through thénitefn of ~ Prior energy
a stochastic process that describes the conveeods The regularization energy is defined by the follogyi

another one that describes the squares. equation:

Let u be the probability distribution of a Poisson point Uprior (x) = Xeex(Up(c) — ¢ (€)), (7)
process andv be the intensity measure of this process

defined orC. where U,(c) = a’yf(c) + a" i (c) + aPP)(c) is a

Consider a point process defined 6ni.e. anE-valued linear mixture of three regularization terms respety on
random variable Each realization ofX is a set of the magnitudeA, the periodicityT, and the duty cyclep.
convectors. Given the reference probability distiim, a Given real data analysis results, these parameiegs
realization ofX could be obtained in two steps. modelled with Gaussian laws.

Firstly, one draws the convectors numbdrom a Poisson Let T andA be respectively the period and the magnitude
distribution p,, = e~%(© z(rf!)“_ Secondly, n independent Means of the convectar and g7, g, and o, the standard

convectors are generated with respect to the Inliion deviations. The functiong, are defined as following:

2 Al — (Aw-A)?

G [ 3O = Suee 50
. . I . . . lpT(C) — Z c (T(w)-T)?

Given this distribution, one defines a Poisson @sscof P Uee  20f

probability distributionu on S. Let us consider a marked W) =Y (p(e+1)/p(K)-1)?

point process where the points belon@'te [0, T;,q,] and P g 207

the marks are stochastic parameters that belihg

[Lnins lnax] X [Amin, Amax]- A realization of this process The functiong is introduced to maximize the number of

is a finite set of squares (points3) in other words a point squares per convector and penalize great numbenef

in C. square convectors. The chosen function is defisdubbow:;
The observatiory(t) (the space-heating active power) is a b(c) = { §iffe] =1
realization of a point procesé defined by its density (.) —plc|? otherwise

with respect to the Poisson process probabilityridision ~ Whered and g are pre-defined parameters.

. One might then build a Markov chain which conesrin o
law to X. Likelihood energy

This term measures the probability of data given a

The process density satisfies the following equatio

1 configuration of objects. Given the chosen modekfrace-
_ f@) =z P (UG, 4 heating load, we propose to define this energyhbystim of
where Z is a normalizing constant arifi(x) stands for the each likelihood objects:
energy of the configuration. Ugara®) = Y cex Yuee Uy (W), (8)
3. APPLICATION TO ELECTRIC SPACE-HEATING The energy termjl is designed as fo"owing:
DECOMPOSITION * The energy of a plausible square is negative.
Our aim is to estimate the configuratianthat maximizes Otherwise, the energy of the proposed square is a
the posterior densitfi(x|y) = f(x) given the active power positive convex function. _
Y. In a Bayesian framework, we need to build bathaa * The gradient ¢n and off events) of a plausible
priori density and a likelihood term. square corr_espond_s to a gradient of the observation
in a pre-defined neighbourhood.
3.1. Posterior density The proposed likelihood energy definition requieegre-

processing of the electric load. In fact, the evdptart up

As mentioned above, in a Bayesian framework [18% t 514 trip) of the whole electric load have to beahad.

marked process density is given as follows

f) < frrior(X) faara(v12), ®) 3.2. RIMCMC sampler and optimization algorithm
where the a priori densitf,.;,-(x) includes priors on the
parameters to be estimated, and the likelihtgg, (v|x) of
a configuration given the observed signal.
The energy term is split into a likelihood term aagbrior
(regularization) term as follows:

U(x) = Uprior (%) + Ugqara (%)

The relationship between energy terms and densiistibns
is given by equations 6.

The space-heating load is modelled by a point m®Xe
defined by its densityf(x) with respect to the Poisson
process of intensity. A Markov chain X,) that converges
to the distributionPy is built using a RJ-MCMC samplers
[13].

In this work, some jumping kernels (birth and deatha
square) and non-jumping kernels (dilatation of the
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magnitude or of the width of a given square, tratish) are  processes framework is proposed. These models were

used to manage the chain transitions have beemedefi widely used in image processing and in model select
The maximuna posterior given by equation 9, In our application, such processes provide a unigadel
Xyap = argmax, f(x)) (9) to any electric appliance avoiding a constrainegragch
is obtained using a simulated annealing algoritin [ based on a specific model per class of electridiamges.
In this paper, the proposed model in the case atep
4, RESULTSON REAL DATA heating load is described and tipesterior density is

defined. The RJMCMC sampler embedded with a
simulated annealing scheme is implemented usingesom
transition kernels. First results on real data satsfying
ahd show that the model is suitable to deal witfedb
interactions (events in our application).

Some improvements could be proposed, such the -hyper
parameters of the prior energy estimation. In &itworks,
more details on the implemented sampler and on the
1200 . . . . . optimization algorithm will be detailed. The praed
model will be extended to other electric appliances

The proposed model has been tested on real ddtargdt
at two customers houses. In each case, the adwerp of
the elementary components have been also measwored
evaluate the algorithms. Tests were carried onhsyiat
mixtures to evaluate the proposed model. Figupeesents
results obtained for two convectors having neaiffeknt
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