

A FAST METHOD FOR SCALING COLOR IMAGES

Jaana Parkkinen, Mikko Haukijärvi, Petri Nenonen

Nokia Corporation
P.O. Box 1000, FI-33721 Tampere

Finland
Jaana.Parkkinen@nokia.com, Mikko.Haukijarvi@nokia.com, Petri.Nenonen@nokia.com

ABSTRACT

Image scaling is an important processing step in any
digital imaging chain containing a camera sensor and a
display. Although resolutions of the mobile displays have
increased to the level that is usable for imaging, images
often have larger resolution than the mobile displays. In
this paper we propose a software based fast and good
quality image scaling procedure, which is suitable for
mobile implementations. We describe our method in
detail and we present experiments showing the
performances of our approach on real images.

KEY WORDS

Mobile phone, camera, display, image scaling

1. Introduction

Over 5 megapixel size sensors are typical to digital
cameras also in the imaging phones, and the sizes are
constantly increasing. The display sizes have not
increased at the same pace on the mobile devices.
Therefore the captured image size has to be reduced so
that it fits into the display. This means image downscaling
using decimation methods. Sometimes an image is
smaller than the display, or it contains an interesting
detail. In this case the image size can be enlarged. The
zooming requires upscaling using interpolation methods.
The basic decimation and interpolation methods are very
low in complexity and effectively implementable, but
produce severe aliasing and pixelization artifacts. The
downscaling and upscaling algorithms have to have an
adequate quality. Otherwise artifacts, such as aliasing
effects, jagged edges, excessive smoothing or
pixelization, are introduced to images.

Mobile platforms set strict limits to the amount of
memory and processing power available for image
processing and enhancement algorithms. Large images
consume lot of memory and processing power. The
amount is directly or exponentially relative to the number
of pixels in an image.

The sampling of signal is an important part of signal
processing theory, and it is widely covered in the
literature. [1] There are presented several possibilities to
do image downscaling and upscaling in the literature of
the signal and image processing. [2,3] In downscaling
many input pixels correspond to one output pixel and in
upscaling vice versa. In the basic downscaling method
only one of the input pixels is selected to be the output
pixel. This is called the nearest neighbor method. The
nearest neighbor method produces severe aliasing
artifacts. The common downscaling methods include
antialias filter and re-sampling. The downscaled data are
most often taken as a linear combination of the sampled
input data and a certain kernel.

Sometimes only a part of the image contains interesting
information. Varying level of zooming with panning
support is required for showing the details at the area of
interest. The zooming can be implemented using
upscaling algorithms. The basic upscaling method is
called pixel copy, which means copying one input pixel to
multiple output pixels. This method causes pixelization
and blocking artifacts. Better results are achieved by
using more advanced methods that use some spatial
filtering. There exist many methods with different
complexity.

Because of varying sizes of source and target images
methods supporting all possible scaling ratios are needed.
Bilinear interpolation is a generally known method. In
this method the output pixel is a weighted average of the
nearest input pixels. The weights can be computed
effectively for any scaling ratio. Therefore the bilinear
interpolation is a good compromise between complexity
and quality. A weighted average of the input pixels can be
used also in the decimation case.

In this paper we introduce a novel and computationally
effective solution to the problem of scaling of digital
images. Our proposed method is a LUT (Look-up Table)
based weighted average processing and it is fast and
suitable for mobile implementations. We provide detailed
description of the algorithm.

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 2032

2. Proposed methods

In this section we describe a novel approach for color
image scaling suitable for mobile implementations. The
computational workflow is explained in more detailed
way for downscaling, upscaling and pan and cropping use
cases.

Downscaling algorithm

The proposed downscaling algorithm is designed to avoid
unnecessary repetitive calculation while processing the
images in order to reduce processing latency. Since the
scaling factors in horizontal (x-direction) and vertical (y-
direction) directions are constant for each row and
column, all the scaling weights, indexes, the start and end
pixels for the algorithm can be calculated and stored in
index and weight vector LUTs. When performing the
image looping and actual scaling the weights and indexes
can be read from LUTs instead of recalculating them
again for each pixel separately.

The downscaling algorithm operates by scanning pixels in
one image row at time, once the row has been processed
then continues with the next row. As an example the
algorithm is described here in x-direction, and the
operation is analogue in y-direction. The downscaling
algorithm starts by calculating the start and end pixels in
the original image as shown in figure 1.

Source
pixels

Start pixel End pixel

Downscaled
pixels

Figure 1 Start and end pixel alignment

The start and end pixels for the algorithm in x direction
are calculated by:

factorzoom
panning

factorzoom
sizeimageoutputsizeimageinputpixelstart

__2
__

2
___ +−=

factorzoom
panning

factorzoom
sizeimageoutputsizeimageinputpixelend

__2
__

2
___ ++=

in which the input image size is the size of the original
image to be downscaled, output image size is the size of
the downscaled image, panning is the amount of panning
as pixels in the original image and the zoom factor defines
the relation of the downscaled image compared to the
original image. Since cropping and panning in all 4
directions (up, down, right and left) need to be supported
for searching and viewing important image details that
may be cropped out if only part of the image is shown and
the rest is cropped, the panning value needs to be taken
into account in the equations.

0 1 2 3…

1 2 3

1

2

0

1

0

0

x1

x2

y1 y2 Dashed line:
Source pixel edges

Solid line:
Downscaled pixel
edges

Darker gray area:
Source pixel

Ligher gray area:
Downscaled pixel

Figure 2. Downscaled pixel value is a weighted average
of the source pixel values that “belong to” the area of the
downscaled pixel [3].

Next the source pixel indexes (index = 0, 0, 1, 0, …) and
subpixel indexes (index = 1, 2, 3, …) for the downscaling
filters with weighted average filter are defined as shown
in figures 2 and 3.

Source
Pixel
Indexes

1 0 0 1 0 0 1 0 0
1 2 3

Subpixel indexes

1

Start pixel End pixel

0

0 1 2 3 Downscaled
pixels

Figure 3. Source pixel indexing and subpixel indexing.

The source pixel index defines all the input pixels that are
needed to calculate two downscaled pixels. The source
pixel indexes are calculated by:

pixelstartx
factorzoompixelstartxfactorzoompixelstartxxindex

_
;_)_(_)1_()(

≠
−−+−=

Hence the source pixel index is set to 1 if the input pixel
is needed to calculate two downscaled pixels in x-
direction, otherwise it is set to 0. While calculating the
source pixel indexes the subpixel index is marked and
incremented every time the source pixel is needed to
calculate 2 downscaled pixels.

Next the algorithm calculates 2 weights in x-direction (in
total 4 weighting factors are needed for one downscaled
pixel: 2 for x-direction and 2 for y-direction) for each
subpixel defined in previous step as shown in figure 4.

Decimated pixels

WeightX2
WeightY1

WeightX2
WeightY2

WeightX1
WeightY2

Source pixel

Weights

WeightX1
WeightY1

Figure 4. Defining weights.

2033

The weight coefficients are proportional to how much of
the input pixel area is inside the output pixel area. The 2
weights are calculated by:






















−−

=
=−−

=

factorzoompixelstartx
factorzoom

indexsubpixel
xindexfactorzoom

pixelstartxfactorzoomxpixelstart
xweight

1024
_

_
0)(;_1024

_;_1024)_1(
)(1









−
=

=
=

()1_1024
0)(;0

;0
)(2

weightfactorzoom
xindex

startx
xweight

where endx ≤≤1

The weight1 can be considered as the left hand side
weight for the scaled pixel and weight2 as the right hand
side weight. The sum of weight1 and weight2 needs to be
1 as defined in weighted average filtering. Note that the
weights and indexes are calculated as integers to
minimize the need of using real numbers in calculations
and also to minimize processing latencies and memory
usage. As example 10bit accuracy (1024 multiplier) is
used here to convert real values into integers.

The source pixel index is set to 0 for the first source pixel
since the first downscaled pixel has no left side source
pixel, and also when one source pixel goes to only one
downscaled pixel. The index is set to 1 when one source
pixel goes to two downscaled pixels or when the left
borders of the source pixel and the downscaled pixel align
exactly inside the image borders.

The index(x), weight1(x) and weight2(x) vectors are
stored in look-up tables to minimize the need of
recalculating them for each row separately. This can be
done since the zoom factor is constant for each image
row. The use of LUTs in processing the image reduces the
processing latency significantly and the main target in the
proposed method was to utilize LUTs as much as
possible.
Once the weights and indexes have been calculated in x
direction the weights and indexes in y direction need to be
calculated using the above formulas.

As a final step of the algorithm the actual image
downscaling is done by calculating the downscaled pixels.
The source image pixels are read from the previously
defined start pixel to the end pixel, and the indexes and
weights are read from Look-up tables. The processing is
done by looping one source image row at the time. The
downscaled pixels are calculated by:

,_*)(2*)(2)2,2(_
,_*)(2*)(1)2,1(_
,_*)(1*)(2)1,2(_

,_*)(1*)(1)1,1(_

pixelinputyweightxweightyxpixelout
pixelinputyweightxweightyxpixelout
pixelinputyweightxweightyxpixelout

pixelinputyweightxweightyxpixelout

=+
=+
=+
=+

Since only those output pixels need to be calculated for
which the subpixel index of the source pixel is 0, only 1
or 2 downscaled pixels may need to be calculated in stead

of all 4. This reduces the processing latency significantly
for very small scaling factors since for majority of source
pixels the subpixel index is set to 0.
The downscaled pixels for each row are calculated by
adding the original input pixel values to the 2 output
buffers in each processing loop as shown in figure 5.

A B

C D

Decimated pixels

B

IndexX=1

D

IndexX=1
IndexY=1

C

IndexY=1

Output buffer 1

Output buffer 2

Source pixel

Weights

A

Figure 5 Output pixel buffering

One input pixel may affect 4 downscaled pixels (A, B, C,
D) depending on the index values indexX and indexY i.e
one source pixel can affect 2x2 downscaled pixels as
described earlier. If the input pixel is affecting only one
downscaled pixel (source pixel index for x is 0, source
pixel index for y is 0) the input pixel value is added to the
output buffer as such (pixel A in figure 8). If the indexX
is set to 1 the pixel B is calculated using the weighted
input pixels and added to the corresponding output buffer
index. If the indexY is set to1 the pixel C is calculated
using weighted input pixels and added to the second
output buffer to the corresponding index. Finally if both
indexes are set to 1, the pixel D is calculated and added to
the second output buffer to the corresponding index.

When the whole image length is processed the added
pixel values in the output buffer 1 are converted back to
8-bit numbers by dividing with 1024 as used in this
example (limited to values 0…255) and written to the
output image row buffer. If the current source row affects
to two downscaled rows (indexY=1) and if the
downscaled row is ready processed in the output buffer 1
the row can be written to output image. After writing the
row to the output image the output buffers 1and 2 are
swapped and the processing starts again from the pixel
downscaling and output buffering for the next input image
row.

Note that for RGB images each color component is
processed separately so the above calculations need to be
done for R, G, and B components separately.

In addition to the low computational load the downscaling
algorithm uses only 1 source image row, 2 destination
image rows and 2 output buffers to downscale the images.
Only 2 subpixel index vectors (1 for original image length
and 1 for original image height) and 4 weight vectors (2
for original image length and 2 for original image height)
are also allocated for processing. The algorithm therefore

2034

needs only very little memory and is very suitable for
applications which have limited memory available such as
mobile phones.

Upscaling algorithm

The proposed upscaling method is based on bilinear
interpolation method. Similarly to the downscaling
method the proposed interpolation method is also
designed to avoid unnecessary repetitive calculations
while processing the images. Therefore since the scale
factors in x- and y-direction are constant for each row and
column, all the scaling weights, indexes and the starting
and ending pixels for the algorithm can again be
calculated and stored in index and weight vectors before
performing the image looping and the actual scaling. As
example the algorithm is described here in x-direction.

The algorithm starts by defining the start and end pixels in
the source image as shown in figure 6.

Start pixel End pixel

Cropped pixels

Source
pixels

Interpolated
pixels

Figure 6 Start and end pixels for upscaling

The start pixel is calculated by:

factorzoom
panning

factorzoom
sizeimagendestinatiosizeimagesourcestart

__2
1__

2
1__ +−−−=

Since the upscaled image can be panned, the start pixel
position depends on the zoom factor and the panning
position. The panning origin is defined to be the center
pixel of the scaled image. Also note that the panning
values are defined as scaled pixels. There is no need to
calculate the end pixel index because the algorithm is
designed so that processing is done by looping the
upscaled pixels instead of looping the original source
pixels, and since the viewed image is smaller than the
upscaled image due to cropping.

 Each scaled pixel is an output of 4 original pixels
weighted as in bilinear interpolation. The processing is
done by looping two source image rows at a time and
using 2x2 filtering window to calculate the interpolated
pixels. Again the scaling can be done in x- and y-
directions separately while scanning the source image
rows. The source pixel indexes and weights are in x
direction for are calculated by:























+−







 ++

+<−

<+

=

factorzoom
xstart

factorzoom
xstart

factorzoom
xstartsizeimagesource

factorzoom
xstart

xindex

__
1

_
1__,0

0
_

,0

)(

where 0 < x < destination_image_size.































+−++−

+<−

<+

=

factorzoom
xstart

factorzoom
xstart

factorzoom
xstartsizeimagesource

factorzoom
xstart

xweight

__
110241024

_
1__,1024

0
_

,1024

)(1






















 +−−






 ++

+<−

<+

=

factorzoom
xstart

factorzoom
xstart

factorzoom
xstartsizeimagesource

factorzoom
xstart

xweight

__
1

_
1__,0

0
_

,0

)(2

where 0 < x < destination_image_size.

The index is set to 1 when the next interpolated pixel
value is calculated from the next source pixel pair, i.e. the
center of the next interpolated pixel is on the right side of
the center of the current right source pixel, and to 0
otherwise.
The above equations are then used to calculate the
indexes and weights in y-direction also.
The weights and indexes are calculated as integers and
10bit accuracy is used here as an example to convert the
real values into integers. Note that when the center of the
destination image pixel is on the left (or upper) side of the
center of first source input pixel (start + x/zoom_factor <
0) the algorithm has no left (or the upper) side source
pixel to calculate the weights. The first source pixel only
is used to calculate the left side (or upper) weight and the
right side (or lower) weight is set to 0. Also note that
when the center of the destination image pixel is on the
right (or lower) of the center of last source input pixel
(input_image_size – 1 < start_pixel + x/zoom_factor) the
algorithm has no right (or lower) side source pixel to
calculate the weights. The last source pixel only is used to
calculate the left side (or the upper) weight and the right
side (or the lower) weight is set to 0.
When the whole image length is processed the upscaled
pixels are converted back to 8-bit numbers by dividing
with 1024 as used in this example (limited to values
0…255) and written to the output image row buffer.
Using LUTs makes the method very low in computational
complexity. The upscaling method uses only 2 source
image rows and 1 destination image row to upscale the
images. 2 pixel index vectors (1 for source image length
and 1 for source image height) and 4 weight vectors (2 for
source image length and 2 for source image height) are
also allocated for processing. These make the method
very fast and memory efficient and therefore applicable to
mobile implementations.

Pan and crop

When the images are zoomed in to 100% or viewed in
original size (1:1 zoom) one pixel in the original image
corresponds to one pixel in the displayed image. In this
case the original image is only cropped to the correct size
if needed and only panning position needs to be taken into
account instead of zoom factor.

2035

The algorithm starts by calculating the first and last pixels
in both x and y direction:

panningsizeimageoutputsizeimageinputpixelstart ++−=
2

1_____

sizeimageoutputpixelstartpixelend ____ += .
Processing in this case is done by only picking the right
amount of pixels from the original input image and
copying them to the corresponding output image. Hence
the algorithm is very fast since no filtering with weighting
and indexing is needed but only memory copying.
Only one source image row and one destination image
row need to be used for processing which makes the
algorithm also very memory efficient.

3. Results

The computational complexity of the proposed scaling
methods has been estimated by calculating the used
operations per pixel. The results have been collected to
Table 1, and are compared to different scaling methods
collected in references [4] and [5]. As seen from the
results the implementation has very low computational
load.

Table 1. Comparisons between different methods. (a) is
min number of operations per pixel for downscaling 2x2
pixels at the time, (b) is max number of operations per

pixel for downscaling 2x2 pixels at the time, and (c) is the
number of operations per pixel for upscaling 2x2 pixels at

the time
Scaling method

Proposed
methods

Operation (a) (b) (c)

Nearest
(reference
method)

Bilinear
(reference
method)

Bi-cubic
(reference
method)

Addition 3 12 9 2 16 22
Multiplication 6 24 12 0 18 29

Other filtering methods, e.g. bi-cubic filtering, can be
implemented using the proposed method by calculating
the weights for the filter to be used and updating the filter
LUTs. Hence changing the filter method does not add the
computational load of the proposed methods.
The memory consumption of the proposed scaling
methods has also been estimated. Since the filtering LUTs
are calculated before the actual image scaling, the scaling
needs only 2 image rows for processing despite the used
filtering method e.g. nearest neighbor, bilinear, or bicubic.
As an example to scale an 8-bit VGA color image would
require 2x3x640x8 bits, and a 1MPix color image would
require 2x3x1024x8 bits.
The visual quality of the presented upscaling method
corresponds to bilinear interpolation method, and the
visual quality of the presented downscaling method
corresponds to linear filtering methods. In Figure 7, there
are presented two images from different downscaling
methods: the proposed method is used in case (a), and
weighted average method in commercial image editing
software is used in case (b). Results show that the
proposed method significantly improves the scaling
performance when compared to the reference method.

The visual quality of the proposed solution using simple
integer operations with 10 bit accuracy is comparable to
commercially available well-known implementation.

4. Conclusion

In this paper, a fast image scaling method based on
weighted average of neighbouring pixels was presented.
The method reduces aliasing and blocking artefacts
resulting good image quality. The method is based on
LUTs calculated beforehand and only once, so that
excessive calculations are minimised. Then only simple
LUT readings and memory accesses are used to scale the
image. This makes the processing loop very simple and
easy to optimise. The whole method can be further
optimised using e.g. assembler coding.
Also only few image row buffers and LUTs are needed
for processing. As a result the presented method has very
low memory consumption and it is computationally
effective, and the resulted scaled image quality is good.
The method can be utilised in devices with low
processing power, e.g. in mobile camera phones and in
multimedia handsets.

(a) (b)

Figure 7. Examples of downscaling results. (a) Proposed
downscaling method, (b) Commercially available

downscaling method

References

[1] A.K. Jain, Fundamentals of Digital Image Processing
(Englewood Cliffs, NJ: Prentice-Hall, 1989).

[2] J. A. Parker, R. V. Kenyon, and D. E. Troxel,
Comparison of interpolation methods for image
resampling, IEEE Transactions on Medical Imaging, Vol.
2, No. 1, 1983, 31–39.

[3] Chun-Ho Kim, et al., Winscale: An Image-Scaling
Algorithm Using an Area Pixel Model, IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 6, June 2003, 549-553.

[4] A. Amanatiadis and I. Andreadis, Digital Image
Scaling, Instrumentation and Measurement Technology
Conference, Ottawa, Canada, May 17-19, 2005.

[5] A. Amanatiadis and I. Andreadis, Performance
Evaluation Techniques for Image Scaling Algorithms,
IEEE International Workshop on Imaging Systems and
Techniques, Chania, Greece, September 10-12, 2008.

2036

