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ABSTRACT

The parameters estimation of mixture distributions is an im-
portant task in statistical signal processing, Pattern recogni-
tion, blind equalization and other modern statistical tasks of-
ten call for mixture estimation. This paper aims to provide a
realistic distribution based on Mixture of Generalized Gaus-
sian distribution (MGG), which has the advantage to charac-
terize the variability of shape parameter in each component
in the mixture. We propose a formulation of the Expectation
Maximization (EM) algorithm under Generalized Gaussian
distribution. For this, two different methods are proposed to
include the shape parameter estimation. In the first method
a derivation of the Likelihood function is used to update the
mixture parameters. In the second approach we propose an
extension of the “classical” (EM) algorithm and to estimate
the shape parameter in terms of Kurtosis. The Kullback-
Leibler divergence (KLD) is used to compare, and evaluate
these algorithms of MGG parameters estimation. An applica-
tion of this technique is considered for modeling load distri-
bution which exhibits an heterogeneity with a high variability

of shape parameters .

1. INTRODUCTION

Modeling the distribution of the observed data with a para-
metric approach is an important tool of statistical signal pro-
cessing. In applications where the data have many clusters,
like image segmentation, a multi-component probabilistic
model representation such as mixture modeling is required.
Actually, in many real applications in the field of image pro-
cessing, Audio, blind equalization, there are a need to better
approximate the observed data and the use of mixture ap-
proach.

The mixture modeling technique has been widely used for
the estimation of the probability density function and has
found significant applications in various domains (see for ex-
ample, Refs. [1, 2, 3]). However little work has been reported
in the use of the MGG [4, 5]. To consider the shape variabil-
ity we propose here the use of the generalized gaussian (GG)
distribution as the basic distribution in the mixture. The GG
distribution has been employed to model and detect Gaussian
and non-Gaussian signals [2, 6], recently in speech modeling
[7], and image and video coding [8].
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In this paper, we focus on the parameters estimation of
the generalized gaussian mixture model. A particular inter-
est is given to estimate the shape parameters. To this end
two different methods which make use of the EM (Expec-
tation Maximization) algorithm [9] to obtain an ML (Max-
imum Likelihood) has been developed. In the first method
we extend the work in [4] which addresses only the case of
2 components by applying it more generally for estimating
parameters considering any number of components in the
mixture. In this method the shape parameters are updated
by numerical optimization of the Likelihood function. In the
second method we propose another efficient alternative to es-
timate the shape parameter of each component which is very
easy and quick to be implemented. In this method the sharp-
ness parameters are estimated as a function of a Higher Order
Statistic (HOS), namely the Kurtosis.

An application of this technique in real load data obtained
from the Tunisian power system is considered. For this pur-
pose we use generalized gaussian mixture model to segregate
the load data into two classes, related to the difference be-
tween daytime and evening load data and seasonal variation,
which are assumed to follow a Generalized Gaussian (GG)
distribution.

The rest of this paper is organized as follows: In section 2
we introduce the Mixture of Generalized Gaussian (MGG)
approach. In Section 3, we present our approaches for the
parameters estimation. In section 4, we discuss the perfor-
mance of the MGG model applied at first to a theoretical ex-
ample then on real load data. Technical details are provided
in the Appendix.

2. THE MIXTURE OF GENERALIZED GAUSSIAN
DISTRIBUTION

A mixture of generalized gaussian MGG is a parametric sta-
tistical model which assumes that the data originates from a
weighted sum of several generalized Gaussian sources. More
specifically, a MGG is defined as:

K

p(x|0) =Y @ipi(x| mi,cici) (1)
i=1

Where

e 0= (a)[,m,',O',',C,'), i= 1,2---K

e K is the number of mixture density components.

e m; is the ith mixture weight and satisfies w; > 0,
Z,K:1 o =1

e pi(x| m;,0;,¢;) is an individual density of the General-
ized Gaussian (GG) distribution which is characterized
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by the following probability density function [10, 2]:

pilx) = wile A Gl 2)

1 T(3/ci) /2

o; T(1/c;)

e ¢; is the ith shape parameter, m; is the ith mean, o; is the
standard deviation.

The shape parameter c; is a measure of Kurtosis (flatness)
and controls the deviation from the normality of the distribu-
tion.

['(x) =[5 7" le~"dr is the Gamma function.

By varying the shape parameter, it is possible to charac-
terize a large class of distribution including gaussian, sub-
gaussian (more peaked, than Gaussian, heavier tail) and
super-gaussian (flatter, more uniform). It is noticed that if
¢ = 2 the GG coincides with the gaussian model and if ¢ =1,
it represents Laplace distribution.

where 7; is the ith scale parameter y; =

Figure 1: The probability density function of the General-
ized Gaussian Mixture distributionforK =1,m; =4, 67 =1.
The MGG allows us to include the case of the gaussian mix-
ture model (¢ = 2).
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Figure 2: The probability density function of the Generalized
Gaussian Mixture distribution for K = 2, and different shape,
weight parameters, ) = 6, =2, m; =4, mp = 8.

Fig.1 and Fig.2 show examples of pdf for MGG dis-
tribution for K = 1 and K = 2. Thanks to the shape pa-
rameter the MGG distribution is more flexible and can ap-
proximate a large class of statistical distributions. This dis-
tribution requires thus the estimation of 4*K parameters,
0(w;,m;,0;,¢;), i = 1,2---K. Particularly we focus, in this
paper, on the shape parameter estimation. This is discussed
in detail in the following sections

3. REFORMULATION OF THE EM ALGORITHM
IN THE CASE OF MGG MODEL TO ESTIMATE
THE SHAPE PARAMETERS

The parameters estimation of the mixture of generalized
gaussian (MGG) is more complex than in the case of mix-
ture of gaussian. Difﬁculty lies in the estimate of the shape
parametersc; i = 1,-

We propose in thls study, to estimate the MGG
parameters, with an extension of the “Expectation-
Maximization”(EM) algorithm [11] which allows to maxi-
mize the complete log of Likelihood function based on equa-
tion 1, given by [12].

K N-1

Y ) hijInfopi(x;|mi,ci,c)]  (3)

i=1 j=1

L(X | 0) =

where

N the sample size

hij=p(i|xj) (i=1,---,K and j € [0,N — 1]) represents the
conditional expectation of p; given the observation x ;, means
the posterior probability that x; belongs to the ith component.
In the case of Generalized Gaussian distribution, if we substi-
tute equation 2 into 3 and after some manipulation we obtain
the following form of L(X | 6):

LX|0)= ZKIZN "hi jIn( i)+zl((:lzljy;11
[ (i =12 —Iny ~In F(L—) — 7y —mi )|

The notation which has been used throughout this paper
is as follows: subscripts i refer to the mixture element, sub-
scripts j to particular elements of a data vector superscripts
(n) to the iteration of the algorithm.

The log likelihood L(X | 0) is optimized iteratively via the
EM algorithm which has been extensively applied in the case
of gaussian mixture.

The steps of the “classical” EM algorithm [11] in the case
of generalized gaussian distribution can be summarized as
followed:

o Initialization Initialize the model parameter 0,
e Expectation step (E-step)

The expectation step is represented by the computation

of the conditional expectation probability 4; ;:

W) ot ,a,,<"> o) )
iJ K (") (n)
):r, CUr I’ ‘m o)

In this step the computation of the L(X | ) based on 6"
is made.
e Maximization step (M-Step) Allows numerical maxi-

mization of the log-likelihood function (equation 4) given
hi ; and 6"

61 = arg maxoL(X | 6) (6)

9(n+1) (CO (n+1) n¢ll_(n+1)76i(n+1)7c¢l_(n+1))

In the case of mixture of simple gaussians the parameters
(w;,m;, 0;) are estimated, in the iteration (n+ 1), with a
set of iterative equations [9, 12]

d)l.(nJrl _ 121 1 w (7)
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However the problem is how to estimate the added shape
parameter c; in the mixture of GG.
To deal with the problem we propose, in the following sec-
tions, two different methods.

3.1 Numerical optimization of the log likelihood func-
tion to estimate the shape parameters

We propose in this section a generalization of the method
proposed in [4] which addresses only the case of 2 compo-
nents by setting the derivatives of the log-likelihood function
(equation 4) to zero with respect to m;,7;, ¢; respectively:

dL(X|6)  dL(X|0) _ dL(X|6)
dm; S dc; S d’)/,‘

Accordingly, we obtain fori =1, -, K the following nonlin-
ear equation related to the shape parameters (The equations
related to the estimation of mean and scale parameters are
presented in Appendix 6):

12 1 \xj—mn)\ |x; —m(")\ .
Z hl] C, + _, v (C_1> ( »y(") ln »y(") =
(11)
Where

W(e) is the digamma function ( ¥(x) = I''(x)/I(x)). (for
simplicity the subscript (n+1) referring to the iterations are
omitted in this expression for ¢;). To solve this equation
numerical optimization method based on Newton Raphson
procedure is applied. This procedure involve the following
updating equation:

=0 (10)

(r)
C§r+1) _ C(r) . (P(Ci( )) (12)
¢'(c;”)
(p(cl(r)) is given by equation (11), the calculation of the

terms ¢’ (cl(r)) can be obtained in the reference [4]. In what
follows, We denote this method by NOP (reference to Nu-
merical OPtimisation).

This approach of shape parameter estimation is very
complex, because the system to resolve is strongly nonlinear.
This method also reveals an important sensibility on initial
conditions and very important time of calculation

In the following section we propose a new method which
extends the iterative process proposed in [12] to include
shape parameter. This allows to avoid heavy computation
in the previous method.

3.2 Use of HOS method in M-step to estimate the shape
parameters

To include the shape parameter estimation in the mixture
problem we propose, in the second method, to use the rela-
tion between ¢; and the Kurtosis (x;) which describes sharp-
ness variability. Hence the analytical relationship between c
and x has been introduced (see [13] for details):

o E(r—m)*  T(5/c)T(1/c)
NS E om0

where I'(x) is the Gamma function.
In the first step we estimate, in (n + 1) iteration, the kur-

(ﬂ+1) +1

tosis K in the same way (with the same weights) as m}

and 0' (equatlon 8-9):

gt _ R O (14)
BN O
i Jj=1"j

In second step we use this estimation of 12','(”1) in the follow-

ing approximation of the inverse of the expression (13), given
by Regazzoni [10], which is obtained by applying the least
squared method (LSM) on a generic second-order monotonic
analytical expression of (13) :

&) S

012
& 1865

s)

(n+1)

This expression allow a good approximation of c;

function of &; for the range of validity & *") > 1.865. This
range of validity includes about all the kurtosis values mea-
sured in the case of our application in real load data, in which
kurtosis variability was measured in the range [2.07, 3.70].

as a

4. EXPERIMENTAL RESULTS

In this section, several simulation experiments are carried out
to demonstrate the performance of the proposed algorithms.
We focus in these experiments to the shape parameters es-
timation. Before applying the MGG model to our real load
data we propose in the following subsection to assess the al-
gorithms performance against known densities.

4.1 Numerical example : known densities

The proposed methods of MGG parameters estimation are at
first tested and confirmed on theoretical example from simu-
lated data from various distributions and compare the simu-
lated data to the fitting distribution with MGG model evalu-
ated with method NOP (presented in section 3.1) and method
HOS (presented in section 3.2). Unfortunately we have not

Real distribution |
= = = distribution modeled with MGG/NOP
== distribution modeled with MGG/HOS

Figure 3: probability density (solid line) of mixture of gaussian random
variable with K = 3, generated by simulating a mixture of gaussian with pa-
rameter values m=[-4, 0, 5], 2 = [1,2,1.5] N = 5000 (sample size), and
fitting by using the MGG model, parameters estimated by NOP method
(dash line) and HOS method (dash-not line). The results of shape param-
eters estimation with HOS are ¢; = 2.13, ¢; = 2.04, ¢3 = 1.98. in this case
KLD = 9.35.10~*. With the NOP method we obtain c1 =2.07, c; =1.82,
3 =2.06. in this case KLD = 1.2.1073

a generator of mixture of generalized gaussian. However we
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can use the generator of mixture of gaussian as particular
case of MGG.

We present here the example of a ’standard” mixture of
gaussian for which the shape parameters are known (¢; = 2).
For this, univariate multimodal Gaussian random number
generator is used.

As example, the figure 3 represents the known densi-
ties (solid line) of mixture of gaussian random variable with
K = 3 (number of components) generated with the parame-
ters values m = [—4,0,5], 6% = [1,2,1.5], @ = [0.3,0.3,0.3]
and sample size N = 5000. In the same figure we show our
result of fitting this density by using the MGG model with
the two algorithms of parameters estimation : method NOP
(dash line) and HOS (dash-not line). We notice that in both
cases the parameters of shape converged towards the real

values ¢ =2 : C = [2.13,2.04,1.98] for HOS method and

C =[2.07,1.82,2.06] for NOP method.

These results show also that the two methods give close
results for the estimation of the shape parameters. How-
ever, the NOP approach is heavier and requires more com-
putational time. Furthermore, the measure of the Kullback-
Leibler divergence [15] between two probability distribu-
tions in both cases, yielding KLD = 9.35.10~* for the HOS
approach and KLD = 1.2.1073 for NOP approach shows that,
globally, the HOS gives the better approximation of the mix-
ture distribution. For its simplicity we retain in the following
the HOS method.

4.2 Application in the case of real peak load data

2 In this section, we present an application to real data. The
MGG model is used to model the annual load distribution.
Such information is greatly useful for estimating the operat-
ing cost of resource plans[14]. During the recent years, the

3.5
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Figure 4: Qualitative modification of the annual hourly peak
load (centered data) distribution (Example years 1990-1998-

12 d3 curve of tunisian power systems has undergone a dra-
matic change. This qualitative change is observable through
the histogram of the dispersal of the daily peak load. This
one represents non-parametric estimation of the probability
density according to the Kernel method [15] during the pe-
riod of 1990-2005. The histogram (Fig.4) makes it possible
to notice the following :

o the annual load distribution revealed a bimodal form,

e high shape variation of the annual load distribution.

2Detailed application of this model is proposed in [5]to study the load
variability in summer and winter seasons. In [5], we use the MGG model
to give parametric expression of Load Duration Curve (LDC) which is con-
nected the cumulative probability distribution function.

This observation of the power distribution behavior mo-
tivates the application of the mixture of generalized gaus-
sian distribution. Thus the proposed model is evaluated
for the annual load distribution. To obtain the estimation
of the associated parameters we have used the hourly data
(365%24=8760 points) and we retained, in this application,
the second method of HOS.

'+ Modeled K=2
Actual measure
=+ = Modeled K=3

pex)

0 I I I I I L
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Load (MW)
Figure 5: Measured annual load diétri)bution (solid line) in comparison
with modeled probability distribution MGG obtained with HOS method
(K =2 dash line) and (K = 3 dash-dot line) obtained from hourly data (8760
hours) 2005. The estimated shape parameters for K =2 are : ¢ = 1.97,
c=2.10

Fig.5 shows, for the example of 2005, the true distribu-
tion (solid line) and the modeled distribution for K =2 (dash
line) and for K =3 (dash-dot line) obtained with HOS method
(developed in section 3.2). Fig.6 illustrate an example of
convergence of the HOS method for estimation of the MGG
shape parameters in the case of mixture of two components.

16|

1.4

o 10 20 30 40 50 60 70 80 920 100
iteration n

Figure 6: Convergence of the shape parameters for the example of the
annual load distribution (2005), K = 2, with iterations number of 100. nu-
merical results: ¢; = 1.97, ¢; = 2.10.

We can see from Fig.5 that the generalized gaussian mix-
ture distribution makes a good representation for the load
distribution. Also the results show that the estimated dis-
tributions for K=2 and K=3 are relatively very close. This is
why, a choice of number of components K = 2 seems to be
sufficient. In this case the load shape variation can be char-
acterized by the two shape parameters c, ¢;.

The results of estimation of ¢y, ¢, in the recent years, are
summarized in table 1.

We notice that the values of cl and c2 vary from one
year to another, the load classes have not necessarily the
same form (c1#£c;), are not also necessarily gaussian (c]#2,
¢#2). This results show that thanks to the shape parameter
the MGG model is more flexible than the “’standard” mixture
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Table 1: The estimated values of shape parameters ¢; and
¢y from the hourly load data (2000-2006) using the HOS
method.

2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006

cl | 1.54 | 1.71 | 1.79 | 2.08 | 1.32 | 1.97 | 2.09

c2 | 242 | 265 | 239 | 2.18 | 2.40 | 2.10 | 2.26

of gaussian, and can approximate a large peak load behavior
which varies according to the various load classes.

It is important to not that the problem related to the
choice of initial conditions is more excessive in the first
method where the EM algorithm convergence is not granted
for a poor starting point . This constitutes a potential weak-
ness of such methods. This point it is not treated in this work
and remains to be investigated in other works. However, we
note that in our application good initial parameters of load
classes can be chosen if we consider the priori knowledge on
the daytime and evening load classes separately.

5. CONCLUSION

The main motivation of this study is to provide estimators
for the MGG parameters. For this, a new formulation of the
EM algorithm is conducted to include the shape parameter
estimation. Two different approaches for estimation of the
MGG parameters are performed. The first method used nu-
merical maximization of the log likelihood function of the
mixture. In the second approach which is easy to be im-
plemented make use of HOS in the maximization step to
estimate shape parameter. Promising results have been ob-
tained in the application of the MGG to encircle the load
distribution variability. The results indicated that the HOS
method has a lower computational time than the numerical
maximization method.

In future work, further investigation will be conducted to
deal with the problem of initial conditions sensitivity and to
refine the choice of number of components in our application.

6. APPENDIX

M-Step based on the derivatives of the log-likelihood
function

In this method the estimation is carried out by setting the
derivatives of the log-likelihood function (equation 4) to

zero. This allows to obtain the following equations:
(n+1)

For m;

i

n n (n) _
S el —m" V=0 ()

For (n+1) .

(1) My = = 0

VLML ) ‘
17)

j=1 "% yl_(n+1) i
where
Lifxj—m"™™ <0

x) = i 18
n(x) { it —m™) >0 (18)

i
To calculate these parameters we need here to solve the

non linear equations 16-17. For this numerical optimization
method based on Newton Raphson procedure has been used.
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