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ABSTRACT

This paper investigates the direct state determination
problem from passive measurements made with a mov-
ing antenna array in the case of a time-varying number
of emitting sources. We derive the Cramér-Rao Bound
(CRB) for the estimation problem and find an approx-
imation that is applicable for a large number of obser-
vations. We use two Subspace Data Fusion (SDF) ap-
proaches to solve the estimation problem. Therein, sub-
spaces are formed in the pre-processing step from the
raw antenna outputs at all positions of the moving ar-
ray. Then the state parameters of interest (e.g. position,
velocity) are estimated directly from a cost function that
results from fusing all subspaces. The SDF approaches
are based on the Multiple Signal Classification (MUSIC)
and on the Subspace Fitting (SSF) method using a low-
and high-dimensional optimization, respectively. In sim-
ulations, we find that the SSF-SDF approach outper-
forms the MUSIC-SDF approach.

1. INTRODUCTION

Target Motion Analysis (TMA) of multiple narrowband
sources using passive antenna arrays is a fundamental
task encountered in various fields like communication,
radar, and sonar. We consider a scenario with a single
moving observer equipped with an antenna array. At N
different points in space, the sensor receives signals of Q
moving sources and collects batches of antenna outputs.
The scenario is assumed to be stationary during one
batch and non-stationary from batch to batch.

According to the traditional approach to solving the
TMA problem, first of all, the Directions of Arrival
(DOAs) of all sources are estimated with a direction-
finding (DF) estimator like the subspace-based MUSIC
method [1]. Then a data association step follows to par-
tition the DOAs into sets of measurements belonging to
the same source. Finally, the DOAs for each source are
used to determine its state with the help of a suitable
bearings-only tracking algorithm.

Recently, some direct position determination (DPD)
methods based on the antenna outputs have been pro-
posed without computing intermediate parameters like
DOAs. The basic idea for a subspace-based DPD ap-
proach goes back to the pioneering work of Wax and
Kailath [2]. They noted that in this way the data as-
sociation step is avoided. Moreover, this kind of ap-
proach was used for a multiarray network in order to es-
timate the positions of multiple sources without explic-
itly computing DOAs and Times of Arrival [3]. Max-
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Figure 1: Basic steps of the SDF approach

imum Likelihood (ML) methods can be found e.g. in
[4], but they are more computationally demanding in
the case of multiple sources. In our previous work, we
proposed a subspace-based DPD approach for a single
moving array [5]. Moreover, we have shown that the
DPD approach can be extended to estimate the target
state (e.g. position, velocity) [6] or adapted to estimate
DOAs and DOA rates [7].

In all these Subspace Data Fusion (SDF) approaches,
the parameters of interest are obtained by minimizing
a single cost function into which all subspaces at all
sensor positions enter jointly (Fig. 1). Moreover, the
estimation accuracy of the source state is much better
than the traditional TMA approach in situations where
the variance of DOA estimates deviates from the CRB.

However, the methods presented so far only investi-
gate the case where the number of emitting sources is
constant. Farina et al. derived the CRB for the general
case that the probability of detection is smaller than
unity [8]. We extend the results to the case of multiple
sources with intermittent emission and adapt them to
derive the CRB for the direct state determination prob-
lem. We give a brief review of the SDF approach based
on the MUSIC method [1] and propose an extension
by using the Subspace Fitting (SSF) method described
in [9]. We show that the state estimation accuracy of
the SSF-SDF approach is much better compared to the
previous MUSIC-SDF approach in situations of a time-
varying number of emitting sources.

This paper is organized as follows: Section 2 presents
the problem formulation. In Section 3 we derive the
CRB for the described TMA problem, and in Section 4,
we outline the considered SDF approaches. Section 5
presents Monte Carlo simulation results that demon-
strate the estimator’s performance. The conclusions are
given in Section 6.
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The following notations are used throughout this
paper: (·)T and (·)H denote transpose and Hermitian
transpose, respectively; In and 0n denote the n × n-
dimensional identity and zero matrix, respectively; and
E {·} denotes the expectation operation.

2. PROBLEM FORMULATION

For N observations, 2N possible emitting/non-emitting
sequences per source can be formed. The κ-th possible
sequence reads Sq,κ : (b1,q)κ, ..., (bN,q)κ, κ = 1, ..., 2N ,
where bn,q is a binary variable that corresponds to the
case where the q-th source is emitting or non-emitting at
time tn. For a given emitting probability Pe,q, which is
constant over the number of observations, the probabil-
ity of occurrence of a particular emitting/non-emitting
sequence is given by

P (Sq,κ) = PN−△̄κ
e,q (1 − Pe,q)

△̄κ , (1)

where △̄κ is the number of observations where the q-th
source does not emit. For Q sources, 2NQ collections
of independent emitting/non-emitting sequences called
events are possible. The probability of occurrence of a
particular event Eℓ : (κ1)ℓ, ..., (κQ)ℓ, ℓ = 1, ..., 2NQ, is
given by

P (Eℓ) =

Q
∏

q=1

P (Sq,(κq)ℓ
) . (2)

We consider an antenna array composed of M ele-
ments mounted on a moving platform and Q inertially
moving sources in the far field of the antenna array. The
sources are assumed to radiate narrowband signals with
wavelengths centered around a common wavelength λ.
The q-th source state xq is given by the source posi-
tion p0,q = (x0,q, y0,q, z0,q)

T at reference time t0 and
the constant velocity ṗq = (ẋq, ẏq, żq)

T for q = 1, ..., Q.
The source position pn(xq) at some time tn is related
to the source state xq = (pT

0,q, ṗ
T
q )T by

pn(xq) = p0,q + (tn − t0)ṗq . (3)

Fig. 2 shows the geometry for the scenario of Q in-
ertially moving sources and a sensor moving along an
arbitrary but known trajectory. During the movement
of the array, N batches of data are collected at the po-
sitions rn, n = 1, ..., N . For the sake of simplicity, we
assume that the antenna attitude does not change with
time, i.e. the orientation of the sensor-fixed coordinate
system is fixed during the batches. The distance be-
tween the q-th source and the observer at the n-th time
slot, △rn,q, is given by the length of the relative vector

△rn(xq) = rn − pn(xq) . (4)

Let sn,k,q denote the complex envelope of the k-th
sample, k = 1, ...,K, of the q-th source signal measured
at time tn if this source emits, i.e. bn,q = 1, and let
zn,k ∈ C

M×1 denote the complex envelopes formed from
the signals received by the array elements. This received
vector can be expressed as

zn,k =

Q
∑

q=1

an(xq) bn,q sn,k,q + wn,k , (5)
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Figure 2: Geometry for the scenario of multiple iner-
tially moving sources and a single moving sensor

where wn,k ∈ C
M×1 is the complex envelope of the

noise. Let the array be sampled sequentially at K differ-
ent mutually exclusive time slots, and assume that the
array transfer vectors can be considered quasistatic in
each slot, i.e. the sensor’s displacement during each time
slot is negligible. The array transfer vector expresses its
complex response at time tn to a planar wavefront arriv-
ing from the direction of the relative position △rn(xq)
(Eq. 4). We assume that the antenna array is perfectly
calibrated for which the array transfer vector is a known
function of the source states:

an(xq) =
(

eikT
n (xq)d1 , ..., eikT

n (xq)dM

)T

(6)

The array transfer vector depends on the position dm

of the m-th antenna element, m = 1, ...,M , relative to
the position rn, and the wavenumber vector

kn(xq) =
2π

λ

△rn(xq)

△rn,q

=
2π

λ

1

△rn,q

(

△xn,q

△yn,q

△zn,q

)

. (7)

Eq. 5 can be written more compactly as

zn,k = An(ρρρx,n) šn,k + wn,k , (8)

where An(ρρρx,n) = [an(x1) · · · an(xQn
)] ∈ C

M×Qn is the
array transfer matrix, and

ρρρx,n = (xT
1 , ...,xT

Qn
)T ∈ R

6Qn×1

šn,k = (sn,k,1, ..., sn,k,Qn
)T ∈ C

Qn×1

denote subsets from the complete parameter vectors

ρρρx = (xT
1 , ...,xT

Q)T ∈ R
6Q×1

sn,k = (sn,k,1, ..., sn,k,Q)T ∈ C
Q×1 (9)

w.r.t. the effective number of emitting sources Qn =
∑Q

q=1 bn,q at the n-th batch.
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Now, we introduce the compact data model

zk = AAA(ρρρx) šk + wk (10)

by stacking the vectors on top and using a block-
diagonal matrix:

zk = (zT
1,k, ..., zT

N,k)T ∈ C
MN×1 ,

AAA(ρρρx) = diag[A1(ρρρx,1) · · ·AN (ρρρx,N )] ∈ C
MN×

P
n
Qn ,

šk = (šT
1,k, ..., šT

N,k)T ∈ C

P
n
Qn×1 ,

wk = (wT
1,k, ...,wT

N,k)T ∈ C
MN×1 .

Now, the problem is stated as follows: Estimate all
source states ρρρx from all received data batches Z =
[z1 · · · zK ] ∈ C

MN×K . To solve the multiple source
TMA problem, the following assumptions are made:
1. The noise vectors wk, k = 1, ...,K, (Eq. 10) are zero-

mean complex Gaussian. They are temporally and
spatially uncorrelated with the covariance

E
{

wkw
H
k′

}

= σ2
w IMN δk,k′ ,

E
{

wkw
T
k′

}

= 0MN , (11)

where δk,k′ denotes the Kronecker delta.
2. The signal vectors šn,k, k = 1, ...,K, (Eq. 8) are fixed

and need to be estimated (deterministic data model).
This does not exclude the possibility that the signals
are sampled from a random process. Moreover, we

assume that
∑K

k=1 šn,k šH
n,k is positive definite.

3. The total number of sources Q and the effective num-
ber of sources per batch Qn, n = 1, ..., N , are known.
In the past, several methods have been proposed to
determine the source number, e.g. in [10].

3. CRAMÉR-RAO BOUND

It is well known that the CRB provides a lower bound on
the estimation accuracy and its parameter dependencies
reveal characteristic features of the estimation problem.
Given a particular event Eℓ, the target parameters are
comprised in the vector

ρρρ =
(

¯̌sT
1 , ˜̌sT

1 , ..., ¯̌sT
K , ˜̌sT

K , ρρρT
x

)T
∈ R

2K
P

n
Qn+6Q×1 , (12)

where ¯̌sk and ˜̌sk are the real and imaginary part of the
source signals. Then, the conditional CRB is related to
the covariance matrix C of the estimation error △ρρρ =
ρρρ − ρ̂ρρ(Z) of any unbiased estimator ρ̂ρρ(Z) as

C = E
{

△ρρρ△ρρρT |Eℓ

}

≥ CRB(ρρρ|Eℓ) , (13)

where the inequality means that the matrix difference is
positive semidefinite. If the estimator attains the CRB
then it is called efficient. The CRB is given by the in-
verse Fisher Information Matrix (FIM)

J(ρρρ|Eℓ) = E

{

(

∂L(Z;ρρρ)

∂ρρρ

)(

∂L(Z;ρρρ)

∂ρρρ

)T
∣

∣

∣

∣

∣

Eℓ

}

, (14)

where

L = −KMN ln(πσ2
w) −

1

σ2
w

K
∑

k=1

|zk −AAA(ρρρx) šk|
2

, (15)

is the log-likelihood function and the parameters refers
to the event Eℓ. In this log-likelihood function zk,
k = 1, ...,K, are random variables due to the random
variables wk, k = 1, ...,K, and the expectation opera-
tion in Eq. 14 is w.r.t. these random variables.

Performing all calculations analog to [11], we obtain
the deterministic CRB for all source states after some
algebra (Assumption 1):

CRB(ρρρx|Eℓ) =
σ2

w

2

[

K
∑

k=1

Re
{

SSSH
k DH P⊥

AAA DSSSk

}

]−1

(16)
with

SSSk = I6Q ⊗ šk ∈ C
6Q
P

n
Qn×6Q ,

D = [D1 · · ·DQ] ∈ C
MN×6Q

P
n
Qn ,

Dq =

[

∂AAA

∂x0,q

,
∂AAA

∂y0,q

,
∂AAA

∂z0,q

,
∂AAA

∂ẋq

,
∂AAA

∂ẏq

,
∂AAA

∂żq

]

,

P⊥
AAA = IMN −AAA

(

AAAHAAA
)−1

AAAH ∈ C
MN×MN ,

where ⊗ denotes the Kronecker product.
The bound in Eq. 16 is conditioned on the particular

event Eℓ. The unconditional CRB is obtained by taking
expectation and using Eq. 2

CRB(ρρρx) =
2NQ

∑

ℓ=1

P (Eℓ)CRB(ρρρx|Eℓ) . (17)

Observe that although the number of possible events
grows exponentially with the number of batches N and
sources Q, the probabilities of the vast majority of
events (Eq. 2) are negligible.

The cumulative distribution function (cdf) φq of the
number of batches △̄ = 0, ..., N with the non-emitting
q-th source is given by [8, Eq. 23]

φq(△̄) =

△̄
∑

δ̄=0

(

N

δ̄

)

PN−δ̄
e,q (1 − Pe,q)

δ̄ . (18)

By definition, φq(N) = 1. Above a certain threshold
value △̄thr,q, all events corresponding to this sequences
can be safely ignored in the calculation of the CRB in
Eq. 17 for all practical purposes. The threshold value
△̄thr,q can be determined by progressively computing
Eq. 18 for △̄ = 0, 1, 2, ... until its value is greater than
some cdf threshold φthr, which should be chosen to be
marginally less than 1, e.g. φthr = 0.99, i.e. [8, Eq. 24]

△̄thr,q = min{△̄ , s.t. φq(△̄) > φthr} . (19)

This strategy ensures that only events are considered
which contribute significantly. Eq. 20 gives the number
of events Lapprox to take into account in the approximate
calculation of the CRB (Eq. 17). A reduction of φthr

would correspond to less computational load but also a
reduced accuracy.

Lapprox =

Q
∏

q=1

△̄thr,q
∑

δ̄=0

(

N

δ̄

)

≪ 2NQ (20)
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Figure 3: Cuts through cost function of the MUSIC-SDF approach (left, middle) and the SSF-SDF approach (right)
with the observation points (black dots), the true (circles) and estimated (crosses) position parameters for the given
emitting probabilities

4. SOURCE STATE DETERMINATION

SDF approaches calculate the source states directly
in one step from the subspaces at all sensor posi-
tions (Fig. 1). The subspaces are calculated in a pre-
processing step by performing an eigendecomposition of
the covariance matrix (Assumptions 2 and 3):

Rn =
1

K

K
∑

k=1

zn,k zH
n,k = [Vn Un]ΛΛΛn [Vn Un]H , (21)

where the column vectors of Vn ∈ C
M×Qn and Un ∈

C
M×M−Qn are, respectively, the eigenvectors spanning

the signal and orthogonal noise subspaces of the covari-
ance Rn with the associated eigenvalues in decreasing
order on the diagonal of ΛΛΛn ∈ R

M×M .
Note that the SDF approaches do not use knowledge

about the emitting probabilities Pe,q, because they are
not sensor parameters like the probability of detection.

4.1 MUSIC-SDF Approach

This SDF approach uses a MUSIC-type cost function
[1], which minimizes the sum of all projections of the
array transfer vectors at the sensor positions onto the
corresponding noise subspaces. The cost function reads

fMUSIC-SDF(x) =

N
∑

n=1

aH
n (x)Un UH

n an(x) , (22)

where the array transfer vector (Eq. 6) is parameterized
by the source state x. The cost function shows minima
for the proper choice of parameters x, if the subspace at
each observer position is orthogonal to the array transfer
vector at this position.

4.2 SSF-SDF Approach

The SDF approach can be extended to a SSF-type cost
function [9], which fits the full subspace spanned by the
array transfer matrix An(ρρρx) to the measurements in a
least squares sense by minimizing

fSSF-SDF(ρρρx) =

N
∑

n=1

tr
{

PAn(ρρρx)Un UH
n

}

, (23)

where tr{·} denotes the trace operation and

PAn(ρρρx) = An

(

AH
n An

)−1
AH

n (24)

is a projection matrix that projects onto the column
space of An(ρρρx). This leads to a single search in 6Q
dimensions instead of Q searches in 6 dimensions, but
there are more degrees of freedom available for fitting.
Note that the SSF solution can be found by using the
iterative Alternating Projection algorithm described in
[12], which performs the 6Q-dimensional minimization
by minimizing a sequence of 6-dimensional cost func-
tions.

4.3 Comparison of the SDF Approaches

As an illustration, we consider the DPD problem and
a scenario in which the sensor moves along an arc from
r1 = (−0.5,−0.5, 0.5)T km to r12 = (0.5,−0.5, 0.5)T

km. Two sources are located on the ground at
the positions p0,1 = (0,−0.5, 0)T km and p0,2 =
(0, 0.5, 0)T km. Furthermore, we consider a 10-element
uniform circular array with element positions dm =
r (cos mπ

5 , sin mπ
5 , 0)T and radius r = λ

2 (sin π
10 )−1.

With the assumption that the sensor lies always
above each source (△zn,q > 0, n = 1, ..., N , q = 1, ..., Q),
the considered problem has a unique solution, because
the condition for unique DF of narrowband sources
holds, which implies that Q < M [13], and the observ-
ability condition established in [14] is satisfied.

Moreover, we assume N = 12 batches with K = 100
samples per batch, and the n-th time slot being at
tn − t0 = n seconds. For the emitted waveforms of each
source we assume that they have constant amplitude
at the sensor positions: |sn,k,q| = s, and we define the
signal-to-noise ratio of a single source and single ele-
ment: SNR = s2/σ2

w.
Fig. 3 compares the cost functions of the SDF ap-

proaches for a fixed z-coordinate, and SNR = 20 dB.
Furthermore, in Fig. 3 (right) are the coordinates of
the first source fixed. Firstly, we assume an emitting
probability of Pe,1 = Pe,2 = 1. The MUSIC-SDF cost
function displays well-pronounced minima and no fur-
ther local minima. In the following cases, the emitting
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probability of the second source is reduced to Pe,2 = 0.7.
Then, for a missing subspace component, the MUSIC-
SDF cost function introduces significant errors (similar
to the known subspace swap effect), while the SSF-SDF
cost function can account for missing subspace compo-
nents. Note that in some cases the MUSIC-SDF cost
function displays no minimum at the location of the sec-
ond source.

5. SIMULATION RESULTS

For the scenario described in Section 4.3, Monte Carlo
simulations with 1000 runs have been carried out to
study the performance of the estimators given in Sec-
tion 4.1 and Section 4.2. In our simulations, we use the
simplex method to find the minima of all cost functions
(Eq. 22 and Eq. 23) and we initialize every search with
the true value.

In Fig. 4, we show only the root mean square error
(RMSE) of the y0-coordinate, because the RMSE of the
coordinates has a similar form. The RMSE reveals that
the SSF-SDF approach performs much better than the
MUSIC-SDF approach. For the first source, both esti-
mators attain the CRB, which is the expected asymp-
totic performance. For the second source, the SSF-SDF
estimator approaches the CRB, where the MUSIC-SDF
does not reach the CRB, because the state estimates are
biased.

Note that we find a similar performance for both ap-
proaches in the cases of a single source with intermittent
emission and multiple sources with continuous emission.

6. CONCLUSIONS

We investigated the direct state determination problem
for sources with intermittent emission, and we proposed
an SDF approach based on the SSF method to solve
the estimation problem. We derived the deterministic
CRB and presented a computationally convenient ap-
proximation. In simulations, we demonstrated the su-
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Figure 4: Square-root of the CRB (solid lines) and the
estimated RMSE for MUSIC-SDF (dash-dot lines) and
SSF-SDF (dotted diamond lines) versus SNR for y0-
coordinate; source 1 (blue lines), source 2 (red lines)

perior performance of the SSF-SDF approach over the
MUSIC-SDF approach.
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