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ABSTRACT

In this work, a new technique for the estimation of the
Shannon’s entropy and the Kullback-Leibler (KL) di-
vergence for one dimensional data is presented. The
estimator is based on the Szegö’s theorem for sequences
of Toeplitz matrices, which deals with the asymptotic
behavior of the eigenvalues of those matrices, and the
analogy between a probability density function (PDF)
and a power spectral density (PSD), which allows us
to estimate a PDF of bounded support using the well-
known spectral estimation techniques. Specifically, an
AR model is used for the PDF/PSD estimation, and
the entropy is easily estimated as a function of the
eigenvalues of the autocorrelation Toeplitz matrix. The
performance of the Szegö’s estimators is illustrated by
means of Monte Carlo simulations and compared with
previously proposed alternatives, showing a good per-
formance.

1. INTRODUCTION

Shannon’s entropy and Kullback-Leibler divergence are
two important measures in information theory [1], which
have proven to be useful in many applications, from
source coding to machine learning and signal processing.
In this paper, we address the problem of estimating both
quantities given a finite set of samples drawn from a
continuous distribution of bounded support. This prob-
lem, which is much harder than that of estimating these
quantities for discrete random variables, has been stud-
ied, for instance, in [2, 3, 4] for the entropy, and in [5, 6]
for the Kullback-Leibler divergence.

In this paper, a new estimator for both information-
theoretic measures is proposed based on the two fol-
lowing ideas. Firstly, we exploit the analogy between
a probability density function (PDF) and a power spec-
tral density (PSD). Both functions are non-negative and
have finite area. Exploiting this analogy a PDF can
be estimated using spectral estimation techniques [7].
For instance, in [8] the authors proposed to use non-
parametric estimators of the PSD to estimate the PDF
and in [4, 9] the PDF is modeled as an autoregres-
sive (AR) process. Moreover, this idea has also been
used in other problems like blind source separation [10]
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and blind channel equalization [11]. Secondly, we use
the Szegö’s theorem for sequences of Toeplitz matri-
ces [12,13] which, in its simpler formulation, states that,
as the size of the Toeplitz matrix tends to infinite, the
arithmetic mean of the eigenvalues is equal to the inte-
gral of the Fourier transform of the sequence that gener-
ates the matrix. Moreover, the Szegö’s theorem can be
extended, for instance, to the product of Toeplitz ma-
trices [13] and to block Toeplitz matrices [14]. Finally,
it is important to point out that the analogy between
the PDF and PSD was also used in [4] to estimate the
entropy by direct application of the Plancherel-Parseval
theorem. However, in this paper, we propose to use the
Szegö’s theorem.

2. PREVIOUS BACKGROUND

2.1 Analogy between PDF and PSD

It is well known that the power spectral density (PSD)
of a discrete-time wide sense stationary random process
has similar properties to a probability density function
(PDF) of a continuous random variable (RV): both are
non-negative and have finite area. This idea allows us
to apply the well-known spectral estimation techniques
to problems that involve the PDF. For instance, this
analogy is exploited in [8,9] to estimate the PDF and in
[4] to estimate the entropy of a RV based on parametric
and nonparametric PSD estimators.

Let us start by assuming that the support of the
PDF lies in [−1/2, 1/2], or at least that it is bounded.
Viewing the density function as a spectrum, we can com-
pute its autocorrelation sequence as the inverse discrete
Fourier transform of the PDF

φx[k] = F−1 (p(x)) =

∫ 1/2

−1/2

ej2πxkp(x)dx,

where p(x) is the PDF of the RV1 x and F−1 (·) denotes
the inverse discrete Fourier transform. Obviously, this
autocorrelation sequence is nothing but samples of the
characteristic function of the RV, as can be seen in the
following equation

φx[k] = Ep

[

ej2πxk
]

, (1)

where Ep [·] denotes the expectation operator with re-
spect to p(x). Based on (1), Kay proposed to use the

1With some abuse of notation, in this paper we use x to denote
both the RV and the argument of the PDF.
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sample moment estimator of φx[k] from N available
samples xi (i = 0, . . . , N − 1), which is given by

φ̂x[k] =
1

N

N−1
∑

i=0

ej2πxik. (2)

Here, it is important to point out that this estimator
also ensures that the associated estimate of the PDF
integrates to one.

2.2 Szegö’s theorem for sequences of Toeplitz
matrices

In this subsection, we review the Szegö’s theorem for
sequences of Toeplitz matrices [12,13]. Consider a K×K
Toeplitz matrix given by

RK =









r[0] r[−1] · · · r[−K + 1]
r[1] r[0] · · · r[−K + 2]
...

...
. . .

...
r[K − 1] r[K − 2] · · · r[0]









,

the Szegö’s theorem deals with the behavior of the eigen-
values of RK as K goes to infinite. Concretely, it states
that under some mild assumptions on r[k] (mainly the
continuity of its Fourier spectrum R(ν) [14]), the eigen-
values of RK are related to the Fourier transform of r[k]
as follows

lim
K→∞

1

K

K
∑

i=1

λK,i =

∫ 1/2

−1/2

R(ν)dν,

where λK,i, i = 1, . . . , K are the eigenvalues of RK and
R(ν) is the Fourier transform of r[k]. A more general
form of the theorem states that

lim
K→∞

1

K

K
∑

i=1

F (λK,i) =

∫ 1/2

−1/2

F (R(ν)) dν,

where F (·) is any continuous function on the range of
R(ν). Additionally, it is also possible to extend the
Szegö’s theorem to matrix operations. For instance, an
interesting result, which will be applied in Section 4, is
related to the eigenvalues of the product of functions
of Toeplitz matrices2. That is, given two K × K func-
tion matrices g(RK) and v(SK), then the eigenvalues
{βK,i}K

i=1 of the matrix product g(RK) · v(SK) verify

lim
K→∞

1

K

K
∑

i=1

βK,i =

∫ 1/2

−1/2

g(R(ν))v(S(ν))dν,

where RK and SK are Toeplitz matrices formed by the
sequences r[k] = F−1(R(ν)) and s[k] = F−1(S(ν)), re-
spectively [14].

2Let A be a K × K diagonalizable matrix A =
Udiag(λ1(A), . . . , λK(A))U−1 . If g is a complex function on the
set {λ1(A), . . . , λK(A)}, the K × K function matrix g(A) is de-
fined as g(A) = Udiag(g(λ1(A)), . . . , g(λK(A)))U−1 .

3. SHANNON ENTROPY ESTIMATION

3.1 Development of the main idea

One of the most important measures in information the-
ory is the Shannon’s entropy [1]. In this section, we
present a new technique to estimate the entropy of a
continuous random variable of bounded support, i.e.,
the differential entropy, by means of the Szegö’s theo-
rem.

Given a random variable x with a probability density
function p(x), the Shannon’s differential entropy (mea-
sured in bits) is given by [1]

Hp(x) = −Ep [log2 p(x)] = −

∫

p(x) log2 p(x)dx. (3)

As can be seen from (3), the entropy is obtained as the
integral of a function of the PDF or, equivalently, as
the integral of a function of a PSD. Assuming that the
support of x lies in the interval [−1/2, 1/2], the entropy
can be rewritten as

Hp(x) = −

∫ 1/2

−1/2

p(x) log2 p(x)dx

= lim
K→∞

−
1

K

K
∑

i=1

λK,i log2 λK,i,

where λK,i are the eigenvalues of a Toeplitz matrix with
its entries given by

[ΦK ]i,j = φx[i − j] = Ep

[

ej2πx(i−j)
]

, i, j = 1, . . . , K.

3.2 Practical implementation

From a practical standpoint, it is not possible to take
the limit as K approaches infinite, and therefore, a finite
version of the Szegö’s theorem should be used

Hp(x) ≈ −
1

K

K
∑

i=1

λK,i log2 λK,i,

where K has to be large enough in order to obtain an
accurate approximation of the Szegö’s theorem.

Additionally, the autocorrelation sequence φx[k]
must be estimated from the N available samples. A

direct application of (2) to estimate φ̂x[k] for large k,
would require a large number of samples. To overcome
this limitation, we propose to use a parametric model
for the PSD. Concretely, we use a regularized AR model
as proposed in [4], and the model’s order is chosen by
means of the minimum description length (MDL) crite-
rion [7]. To summarize, the following algorithm is pro-
posed:

• Normalize the samples to ensure that they belong to
the interval [−1/2, 1/2] as follows

yi = αxi.

• Estimate pmax + 1 lags of the autocorrelation using

(2): φ̂y[0], . . . , φ̂y [pmax].
• Obtain the AR models of orders from 1 to pmax.
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• Select the AR model which minimizes the MDL cri-
terion (order p) and use it to extrapolate K (K ≫

p + 1) lags of φ̂y[k].

• Build the Toeplitz matrix Φ̂K from the extrapolated
autocorrelation sequence.

• Estimate the entropy of y as follows

Ĥq(y) = −
1

K

K
∑

i=1

λ̂K,i log2 λ̂K,i,

where λ̂K,i are the eigenvalues of Φ̂K and q(x) is the
PDF of the RV y.

• The entropy of x is given by

Ĥp(x) = Ĥq(y) − log2 α.

4. KULLBACK-LEIBLER DIVERGENCE
ESTIMATION

In this section, an estimator of the Kullback-Leibler
(KL) divergence [1] is presented following a similar ap-
proach. Given two random variables x and y with prob-
ability density functions p(x) and q(x), the Kullback-
Leibler divergence is defined (in bits) as

D(p||q) = Ep

[

log2

p(x)

q(x)

]

=

∫

p(x) log2

p(x)

q(x)
dx.

This divergence is finite if p(x) is absolutely continuous
with respect to q(x), and zero if and only if p(x) = q(x).
A useful property, that will be used later, is that the
Kullback-Leibler divergence is scale invariant. Specifi-
cally, consider the following RVs v = αx and w = αy
(α > 0) with PDFs t(x) and u(x), then the KL diver-
gence is given by

D(t||u) = D(p||q).

For our purposes, it is useful to rewrite the KL diver-
gence as follows

D(p||q) = −Hp(x) −

∫

p(x) log2 q(x)dx.

Finally, assuming that the support of both PDFs is
constrained to the interval [−1/2, 1/2] and taking into
account the results from Section 2.2, it is possible to
rewrite the KL divergence as

D(p||q) = lim
K→∞

1

K

K
∑

i=1

λK,i log2 λK,i

− lim
K→∞

1

K

K
∑

i=1

βK,i, (4)

where λK,i are the eigenvalues of Φ
(x)
K , and βK,i are the

eigenvalues of the product of Φ
(x)
K by log2 Φ

(y)
K , where

the Toeplitz matrices Φ
(x)
K and Φ

(y)
K are given by

[

Φ
(x)
K

]

i,j
=

∫

p(x)ej2πx(i−j)dx, i, j = 1, . . . , K,

[

Φ
(y)
K

]

i,j
=

∫

q(x)ej2πx(i−j)dx, i, j = 1, . . . , K.
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Figure 1: PDF of the uniform mixture

Finally, taking (4) into account, it can be seen that the
KL divergence can also be expressed in terms of the
eigenvalues of Toeplitz matrices. Therefore, we propose
the following algorithm to estimate the KL divergence
from N available samples:

1. Normalize the samples to ensure that the RVs are
constrained to the interval [−1/2, 1/2] as follows:

vi = αxi, wi = αyi.

2. Obtain the best AR models for vi and wi as in the
previous section and use these models to extrapolate
K lags of both autocorrelation sequences.

3. Build the two K × K Toeplitz matrices: Φ̂
(v)

K and

Φ̂
(w)

K .
4. Estimate the Kullback-Leibler divergence as follows

D̂(p||q) =
1

K

K
∑

i=1

λ̂
(v)
K,i log2 λ̂

(v)
K,i

−
1

K
trace

(

Φ̂
(v)

K log2 Φ̂
(w)

K

)

,

where λ̂
(v)
K,i are the eigenvalues of Φ̂

(v)

K .

5. SIMULATION RESULTS

5.1 Entropy estimation

In this subsection, the performance of the proposed esti-
mator is evaluated by means of Monte Carlo simulations.
Concretely, we measure the mean value and the mean
square error (MSE) of the estimator for a uniform den-
sity x ∼ U [−0.1, 0.1] and for a mixture of uniform den-
sities x ∼ 0.3U [−0.4,−0.1]+ 0.7U [0.1, 0.4], which is de-
picted in Fig. 1. The following parameters are selected
for the proposed technique in all examples: the regu-
larization parameter for the AR model is λ = 10−5 [4],
the size of the correlation matrix K is proportional to
the model’s order p, concretely, we used K = 10p and
K = 40p. We have compared the performance of the
proposed estimator with those obtained by the follow-
ing estimators:

• Kernel-based estimator: this estimate is based on
the numerical integration (using a grid of L = 1000
points) of the kernel-based estimated PDF [15].
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Figure 2: Mean value and MSE of the different estima-
tors of the entropy for x ∼ U [−0.1, 0.1]

Specifically, we have chosen a Gaussian kernel with
kernel size σk = 0.003 and σk = 0.002 for the uni-
form and mixture of uniform densities, respectively.

• Vasicek’s estimator [2], which relies on the fact that
the entropy can be rewritten as

Hp(x) =

∫ 1

0

log2

(

dF−1(u)

du

)

du,

where F (u) is the cumulative distribution function
(CDF). The estimator is obtained by approaching
the CDF with order statistics as follows

Ĥp(x) =
1

N

N
∑

i=1

log2

{

N

2m

(

x(i+m) − x(i−m)

)

}

+ f(m, N),

where {x(i)} is the set of ordered samples xi, m is
the order spacing and f(m, N) is a bias correction
term [2]. For all examples, an order spacing of m = 3
is selected.

• The entropy estimator of [4] which is also based on
the analogy between a PDF and a PSD and the
Plancherel-Parseval theorem.

Figures 2 and 3 show the results of the different esti-
mators. As can be seen, Vasicek’s estimator has a very
low bias (for the first example, its mean value is indistin-
guishable from the theoretical value), although in terms
of MSE its performance is degraded, especially for the
mixture of uniform densities shown in Fig. 3. Regarding
the Szegö’s approach, we can see that, although it is bi-
ased, its overall MSE is rather small, especially for large
values of K and N . On the other hand, the conducted
simulations have shown that the bias depends on the
size of the Toeplitz matrix and the number of available
samples. Not surprisingly, when N is small, smaller ma-
trices should be used to obtain a low bias; on the other
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Figure 3: Mean value and MSE of the different es-
timators of the entropy for x ∼ 0.3U [−0.4,−0.1] +
0.7U [0.1, 0.4]

hand, when N is large, larger Toeplitz matrices pro-
vide better results. Finally, the kernel-based approach
does not provide in general accurate estimates and the
estimator of [4] provides similar results. However, the
proposed approach is more general in the sense that it
can be applied to estimate other information-theoretic
measures.

5.2 Kullback-Leibler divergence estimation

In this subsection, the performance of the proposed esti-
mator for the KL divergence is presented. We have cho-
sen the parameters of the previous subsection. The pro-
posed estimator is compared to the estimator presented
in [5], which is based on the M -th nearest neighbor (for
the simulations M = 5 and M = 10 are selected) and is
given by

D̂(p||q) =
1

N

N
∑

i=1

log2

dM (xi)

d′M (xi)
+ log2

N

N − 1
,

where dM (xi) is the Euclidean distance from xi to its
M -th nearest neighbor in the set {xl}, l = 1, . . . , i−1, i+
i, . . . , N and d′M (xi) is the Euclidean distance from xi to
its M -th nearest neighbor in the set {yl}, l = 1, . . . , N .

Specifically, the mean and MSE values of the KL es-
timates D̂(p||q) and D̂(q||p), when p(x) = N (0, 1) and
q(x) = N (0, 2), are shown in Figures 4 and 5, respec-
tively. Here, we must point out that using the proposed
technique with PDF of unbounded support can suffer
from aliasing [8] in the implicit PSD estimation. How-
ever, as can be seen in the figures, the results are accu-
rate. In particular, it can be seen that the proposed esti-
mator provides very good MSE results, although its bias
is larger than the KNN approach (obviously its variance
is much lower), mainly when the number of available
samples is small.

2473



500 1000 1500 2000 2500

0.15

0.2

0.25

M
ea

n 
V

al
ue

 (
bi

ts
)

 

 
Szego Approach (K=10p)
Szego Approach (K=40p)
KNN (M=5)
KNN (M=10)
Theoretical

500 1000 1500 2000 2500

−40

−35

−30

−25

−20

M
S

E
 (

dB
)

N

 

 
Szego Approach (K=10p)
Szego Approach (K=40p)
KNN (M=5)
KNN (M=10)

Figure 4: Mean value and MSE of the different estima-
tors of the KL divergence D̂(N (0, 1),N (0, 2))

6. CONCLUSIONS

In this work, a new estimator for the Shannon’s entropy
and the Kullback-Leibler divergence of one dimensional
data is presented. The idea is based on the combina-
tion of the Szegö’s theorem for sequences of Toeplitz
matrices and the analogy between a probability density
function (PDF) and a power spectral density (PSD).
The performance of the proposed method has been com-
pared to that of other techniques by means of numer-
ical examples, which show that the proposed estima-
tors provide very accurate results. Finally, we have to
point out that the proposed technique could be extended
to other information-theoretic measures (for instance,
Renyi’s entropy or Csiszar’s divergence), as well as to
multidimensional data. These extensions will be con-
sidered in future work.
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Their Applications. Berkeley: Univ. Calif. Press,
1958.

[13] R. M. Gray, Toeplitz and Circulant Matrices: A Re-
view. Foundations and Trends in Communications
and Information Theory, 2006, vol. 2, no. 3.

[14] J. Gutierrez-Gutierrez and P. M. Crespo, “Asymp-
totically equivalent sequences of matrices and her-
mitian block Toeplitz matrices with continuous
symbols: Applications to MIMO systems,” IEEE
Trans. on Inf. Theory, vol. 54, no. 12, pp. 5671–
5680, Dec. 2008.

[15] E. Parzen, “On estimation of a probability density
function and mode,” Time Ser. Anal. Papers, 1967.

2474


	 Introduction
	 Previous background
	 Analogy between PDF and PSD
	 Szegö's theorem for sequences of Toeplitz matrices

	 Shannon entropy estimation
	 Development of the main idea
	 Practical implementation

	 Kullback-Leibler divergence estimation
	  Simulation results
	 Entropy estimation
	 Kullback-Leibler divergence estimation

	 Conclusions

