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ABSTRACT
Total variation based image restoration method was first pro-
posed by Rudin Osher and Fatermi in 1992. The images re-
sulting from its application are usually piecewise constant,
and have sometimes undesirable staircasing effect. To reduce
this effect, we propose an improved model by combining the
advantages of total variation and H1 regularization. The new
model substantially reduces the staircase effect, while pre-
serving sharp edges. This model can be used in image recon-
struction, it has advantages of keeping edges and recovering
smooth region’s value. We give 1D and 2D experimental re-
sults to show the efficiency of the proposed model.

1. INTRODUCTION

Image processing refers to the analysis and extraction of in-
formation from images, including restoration, compression
and segmentation. Applications can be found in many ar-
eas like medical diagnosis, satellite surveying and computer
techniques.

The aim of image restoration is to estimate the ideal true
image from the recorded one. The direct problem is the com-
puting of blurred image from a given image. The usual model
for it is the convolution by a given kernel or point spread
function. In many cases, the inverse problem of computing
the true image from the observation is ill-posed. A general
method to dealing with inverse problem is that of regular-
ization. The choice of regularization will be essential for a
satisfactory image restoration process. The solution of reg-
ularization based on least squares criteria is usually continu-
ous, therefore, the image edges can not be well restored. To
overcome this difficulty, a technique based on the minimiza-
tion of total variation norm subject to some noise constraints
is proposed by Rudin, Osher and Fatemi [1], that is, to seek
solutions in BV space. The space of functions of bounded
total variation plays an important role when accurate esti-
mation of discontinuities in solutions is required. The total
variation (TV) denoising method preserves edges well, but
has sometimes undesirable staircase effect, namely the trans-
formation of smooth regions into piecewise constant regions
(stairs), which implied that the finer details in the original im-
age may not be recovered satisfactorily. To solve this prob-
lem, Chan, Marquina and Mulet [2] proposed an improved
model, constructed by adding a nonlinear fourth order diffu-
sive term to the Euler-Lagrange equations of the variational
TV model. Marquina and Osher [3] preconditioned the right
hand side of the parabolic equation with |∇u| which had a
staircase reducing effect. Another popular way to reduce
staircasing is to introduce in some way higher order deriva-
tives into the regularization term. Chambolle and Lions [4]
do this by minimizing the inf-convolution of the TV norm

and a second order functional. Instead of combing TV norm
and second order derivatives within one regularization func-
tional, Lysaker and Tai [5] use two regularization functionals.
In [6], Blomgren, Chan and Mulet propose a “TV-H1 inter-
polation” approach to address the staircase problem of the
TV technique. The approach is performed by redefining the
Total Variation functional R(u) in view of the properties of
TV-norm and H1-seminorm. However, it is not completely
clear how to choose a function Φ, which makes the regular-
izing functional R(u) being convex. In this paper, we give
a choice of function Φ, and the corresponding regularizing
functional R(u) verifies the sufficient conditions for convex-
ity. This is mathematically desirable, for then the constrained
optimization problem will have some kind of uniqueness.

The paper is organized as follows: in section 2, we intro-
duce the image restoration problem using the Total Variation
norm as regularization functional. In section 3, we describe
the staircase effect caused by the TV model and briefly re-
view some techniques proposed in literature to deal with it.
In section 4, we construct an improved regularizing func-
tional to reduce the staircase effect. We then analysis our
model and give its Euler-Lagrange equation as well as its
discretization method. In section 5,we give numerical exam-
ples to test the efficiency of our new model. The final part is
our conclusion.

2. TOTAL VARIATION IMAGE RESTORATION

An image can be interpreted as either a real function defined
on Ω, a bounded and open domain of R2, or as a suitable
discretization of this continuous image. Our aim is to re-
store an image which is contaminated with noise and blur.
The restoration process includes the recovery of edges and
smooth regions. Let us denote by z the observed image and
u the real image. We assume that the degradation model is
Ku + n = z, where K is a known linear blur operator, and
n is a Gaussian white noise, i.e. the values ni of n at pix-
els i are independent random variables, each with a Gaussian
distribution of zero mean and variance σ2. Our objective is
to estimate u from given z. The inverse problem has many
solutions and is ill-posed. If we impose a certain regularity
condition on the solution u, then it may become well-posed
[7]. In [1], it is proposed to use as regularization functional
the so-called Total Variation norm or TV-norm :

TV (u) =
∫

Ω
|∇u|dxdy =

∫

Ω

√
u2

x +u2
ydxdy. (2.1)

Since TV norm does not penalize discontinuities in u,
thus we can recover the edges of the original image. The
restoration problem can be written as:
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min
u

∫

Ω
|∇u|dxdy, (2.2a)

subject to ‖Ku− z‖2
L2 = |Ω|σ2. (2.2b)

Using known techniques, the solution of problem (2.2) can
be achieved by solving the equivalent unconstrained prob-
lem:

min
u

∫

Ω
(α|∇u|+ 1

2
(Ku− z)2)dxdy. (2.3)

where α represents the tradeoff between smoothness and fi-
delity to the original data. Assuming homogeneous Neu-
mann boundary conditions, the Euler-Lagrange equation of
(2.3) is:

0 =−α∇ · ( ∇u
|∇u| )+K∗(Ku− z). (2.4)

The above equation (2.4) is not well defined at locations
where |∇u|= 0, due to the presence of the term 1/|∇u|. The
common method to overcome this technical difficulty is to
slightly perturb the total variation functional to become:

∫

Ω

√
|∇u|2 +βdxdy,

where β is a small positive number.
In [9] it is shown that the solutions of the perturbed prob-

lems

min
u

∫

Ω
(α

√
|∇u|2 +β +

1
2
(Ku− z)2)dxdy (2.5)

converge to the solutions of (2.3) when β → 0. The Euler-
Lagrange equation of (2.5) is

0 =−α∇ · ( ∇u√
|∇u|2 +β

)+K∗(Ku− z), (2.6)

with homogeneous Neumann boundary conditions.

3. THE STAIRCASE EFFECT

The image restoration model based on total variation regu-
larization tends to yield piecewise constant images. This is
‘staircasing effect’. Smooth regions in original image are re-
covered as piecewise smooth regions. In order to overcome
this difficulty, some works focus on introducing higher or-
der derivatives into the regularization term. Some starts from
the parabolic equation and reform the right hand side of the
equation to get reduced effect of staircasing. A popular ap-
proach to reducing staircasing is to combine the ability of TV
denoising to preserve edges with the ability of H1 to preserve
smooth regions. Blomgren, Chan and Mulet [6] proposed to
use as regularizing functionals the interpolation of TV-norm
and H1-seminorm, because staircase effect is partly due to
the fact that the TV-norm is not biased against discontinuous
nor continuous functions. On the other hand, the functional

H1(u) =
∫

Ω
|∇u|2dxdy,

has a strong bias against discontinuous functions.
Consider functionals of the type:

R(u) =
∫

Ω
|∇u|pdxdy, (3.1)

where p ∈ [1,2]. TV-norm and H1 functionals can be ob-
tained by Eq. (3.1) with p = 1,2 , respectively. In [6],
numerical evidence show that sharp edges are obtained for
p = 1,1.1, and the staircase effect does exist. With the in-
creasing of p, for instance p = 1.5,2, those sharp edges
are smeared, but the staircase effect is alleviated. In view
of these results, the criterion of constructing regularization
functionals should be that obtain TV behavior at sharp gra-
dients (edges) and H1 behavior away from edges. The ap-
proach which is proposed by Blomgren, Chan and Mulet is
to consider regularizing functionals of the type:

R(u) =
∫

Ω
Φ(|∇u|)dxdy, (3.2)

Φ(|∇u|) could be a “convex combination” of x and x2, with
variable weight α(x) ∈ [0,1]:

Φ(x) = α(x)x+(1−α(x))x2,

with α(x)→ 1 when x→∞ and α(x)→ 0 when x→ 0. That
is, at edges where |∇u| is very large, Φ(x) is close to x, the
result of using functional R(u) is approximately equal to that
of TV-norm. At smoother region where |∇u| is very small,
Φ(x) is close to x2, the result of using functional R(u) is ap-
proximately equal to that of H1-seminorm.

4. A CONVEX REGULARIZING FUNCTIONAL
FOR STAIRCASE REDUCTION

As stated in section 3, we consider regularizing functional
R(u),

R(u) =
∫

Ω
Φ(|∇u|)dxdy,

Φ(x) = α(x)x+(1−α(x))x2 (4.1)

where α(x) = x
1+x , which satisfies α(x)→ 1 when x→∞ and

α(x)→ 0 when x→ 0. Thus we get regularizing functional

R(u) =
∫

Ω

2|∇u|2
1+ |∇u|dxdy (4.2)

Therefore, the new model for total variation denoising is

minα
∫

Ω

2|∇u|2
1+ |∇u| +

1
2
‖Ku− z‖2

L2 (4.3)

The Euler-Lagrange equation of (4.3) is

0 =−∇ · ( 2+ |∇u|
(1+ |∇u|)2 ∇u)+λK∗(Ku− z) (4.4)

We calculate the derivatives of functional R(u),

R′(u) =−∇ · (Φ′(|∇u|)
|∇u| ∇u) (4.5)

R′′(u)v =−∇ · (Φ′(|∇u|)
|∇u| (∇v− (∇u,∇v)

|∇u|2 ∇u)
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+Φ′′(|∇u|) (∇u,∇v)
|∇u|2 ∇u). (4.6)

From (4.6) we deduce that:

(R′′(u)v,v) =
∫

Ω
(

Φ′(|∇u|)
|∇u| (|∇v|2− (∇u,∇v)2

|∇u|2 )

+Φ′′(|∇u|) (∇u,∇v)2

|∇u|2 )dxdy. (4.7)

The Cauchy-Schwartz inequality implies that

|∇v|2− (∇u,∇v)2

|∇u|2 ≥ 0,

therefore Φ′(x) ≥ 0 and Φ′′(x) ≥ 0, x ≥ 0, that is , Φ is an
increasing convex function in [0,∞), are sufficient conditions
for the functional R of (4.2) being convex. It’s easy to get the
expression of Φ′(x) and Φ′′(x):

Φ′(x) =
x(x+2)
(1+ x)2

Φ′′(x) =
2

(1+ x)3

Obviously, Φ′(x)≥ 0, Φ′′(x) > 0 when x≥ 0. Therefore, the
functional R of (4.2) is convex.

There are many methods to solve Euler-Lagrange equa-
tion (4.4). L. Rudin, S. Orsher and E. Fatemi [1] use a time
marching scheme to reach a steady state of a parabolic equa-
tion; C. Vogel and M. Oman [8] propose the fixed point it-
eration method, which results in the lagged diffusivity fixed
point algorithm. Chan and Mulet [9] give the convergence
of the lagged diffusivity fixed point method. Considering the
presence of highly nonlinear and non-differentiable term in
Euler-Lagrange equation, Chan, Golub and Mulet proposed a
nonlinear primal-dual method [10], Chan and Chen [11] intr-
duced the nonlinear multigrid method. Further works about
fast total variation minimization method and algorithm can
be seen in literature [12, 13]. In our computation, we ref-
erenced Vogel and Oman’s fast, robust total variation-based
image reconstruction method [14]. To solve Euler-Lagrange
equation (4.4), fixed point iteration technique is adopted:

u0 = z , solve for uk+1:

−∇ · ( 2+ |∇uk|
(1+ |∇uk|)2 ∇uk+1)+λK∗(Kuk+1− z) = 0. (4.8)

The new model (4.3) has some advantages: First, because
of the convexity of the regularizing functional R(u), the solu-
tion to problem (4.3) has some kind of uniqueness. Second,
our model has no non-differentiable locations. It is not nec-
essary to do numerical regularization, namely, to replace the
term |∇u| by

√
|∇u|2 +β for a small enough positive artifi-

cial parameter β . Third, the new model can efficiently reduce
the staircase effect in smooth regions while keep sharp edges
behaving like total variation based image restoration model.

5. NUMERICAL EXAMPLES

In this section,we perform numerical experiments in 1D and
2D images. In the first experiment, we use a synthetic 1D
image which includes piecewise constant, piecewise linear
and piecewise parabolic regions. The original image, shown
in Figure 1, is added random noise and blurred by Gaussian
kernel. The kernel is defined as

g(x) =
1√

2πσ
e
−x2

2σ2 .

31 points of the discrete kernel with σ = 4.5 is used to get
the contaminated image Figure 2. From Figure 3 to Fig-
ure 5 we give three kinds of restoration of the corrupted im-
age. Restoration by total variation regularization is shown in
Figure 3, restoration by BCM (Blomgren, Chan and Mulet)
model [6] in Figure 4 and our proposed model in Figure 5.
We observe that in Figure 5 the staircase effect of smooth re-
gions is improved and edges are correctly reserved. Figure
4 has better staircasing reduction in some region, but worse
edge location retaining and the ’Gibbs’ phenomenon exists.
To evaluate the quality of restored images, we calculated sig-
nal to noise ratio (SNR) for each image. The SNR values of
images in Figure 4 and Figure 5 are 14.5dB and 15.5dB re-
spectively. Before restoration, the image SNR is 11.8dB. We
can see that the reconstructed image with proposed model
has better SNR value. In the computation, we found that the
staircase effect depends on the choice of regularizing param-
eter λ in (4.8), therefore, we use the same value (λ = 0.005)
when doing comparison.

In the second experiment, we perform 2D image restora-
tion with different staircasing reduction models. The original
image is created by a two values function, 1 inside and 18
outside ( Figure 6). We contaminate the image with random
noise and Gaussian kernel ( Figure 7). The kernel takes the
value of σ = 4.5. We discretize the gaussian function by step
size h = 0.02 both in x and y directions. Similar to the 1D
case, we use 31 by 31 points to blur the original image. In
Figure 8, the noisy and blurred image is restored using TV
technique. Figure 9 and Figure 10 are reconstructed images
using BCM model and our model respectively. We can see
that both TV and BCM model have problems on recovering
curve edges. The resulted edges do not look so smooth as it
should be. This is suffering from the staircasing effect. Using
our model curve edges can be better recovered. Notice also
that how the adjoint parts of the two edge circles are recov-
ered. Our model retains corner better than BCM model does.
BCM model uses a third order polynomial interpolating be-
tween 0 and sgmax. gmax is the maximum reliable gradient
on the discrete grid and 0 < s ≤ 1. The recovered image is
sensitive to the choice of s. We have tried different s, Fig-
ure 9 gives best image recovery among all other images we
have obtained by BCM model. The SNR values correspond-
ing to images from Figure 8 to Figure 10 are, respectively,
13.7dB, 14.4dB and 14.1dB. The contaminated image SNR
value is 4.2dB. For the 2D image our model has very close
SNR value improvement with BCM model, but the advan-
tage of curve edge recovery is obvious. In Figure 11 we plot
three cross lines which respectively correspond to the origi-
nal, the blurred and the restored images. We can observe that
the proposed model is efficient in recovering image edges
and pixel values. In application fields, it’s necessary for both
pixel values and edge locations be recovered.
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Figure 1: Original image.
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Figure 2: Noisy and blurred image.
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Figure 3: Total Variation restoration.
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Figure 4: BCM model restoration. Dotted line is recon-
structed image, solid line is original image
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Figure 5: Our proposed model restoration. Dotted line is
reconstructed image, solid line is original image
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Figure 6: Original image with value 1 inside and 18 outside.
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Figure 7: Blurred image with random noise and gaussian ker-
nel.
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Figure 8: Restored image by Total Variation regularization.
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Figure 9: Restored image by BCM model.
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Figure 10: Restored image by our proposed model.
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Figure 11: Comparison by cross lines.The solid line, dotted
line and dashed line respectively corresponds to the original
image,blurred image and restored image by our model.

6. CONCLUSION

TV based image restoration method is widely used in im-
age processing area. Its disadvantage is the staircase effect
in smooth regions. We proposed an improved model which
combines the advantage of TV and H1. It can reduce the
staircase effect and recover both the pixel values and correct
edge locations. We have used it to reconstruct object densi-
ties from real data of x-ray radiograph tomography in nuclear
field.
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