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ABSTRACT

In this paper, we propose an image coding scheme based on a
wavelet-like transform derived from orthogonal polynomial basis.
First, 2D non-separable wavelet functions are derived from a set of
bivariate orthogonal polynomials. Then, a wavelet-like transform
coding scheme using the proposed wavelet functions is proposed.
The motivation behind using orthogonal polynomials is that they
exhibit some properties related to the human visual system (HVS)
[1]. After applying the proposed transform, the obtained coeffi-
cients are threshold coded using quantization and bit allocation as
in JPEG baseline system. The performance of the proposed trans-
form coding method is reported. The proposed coding scheme is
also compared with other transform coding methods such as JPEG,
JPEG2000 and JPEG-XR/HDPHOTO.

1. INTRODUCTION

Digital imaging has had an enormous impact on industrial ap-
plications and scientific projects. It is no surprise that image
compression has been a subject of great commercial interest. In
addition to being a topic of practical importance, the problems
studied in image compression are also of considerable theoretical
interest. The problems draw upon and have inspired work in infor-
mation theory, applied harmonic analysis, and signal processing.
Efforts in this field of research can be categorized in two ways:
lossless vs. lossy compression and predictive vs. transform coding.

1.1 lossless vs. lossy compression

In lossless compression schemes, the reconstructed image, after
compression, is numerically identical to the original image. How-
ever lossless compression can only achieve a modest amount of
compression. An image reconstructed following lossy compression
contains degradation relative to the original. Often this is because
the compression scheme completely discards redundant informa-
tion. However, lossy schemes are capable of achieving much higher
compression.

1.2 predictive vs. transform coding

In predictive coding, information already sent or available is used
to predict future values, and the difference is coded. Since this is
done in the image or spatial domain, it is relatively simple to im-
plement and is readily adapted to local image characteristics. On
the other hand, transform coding first transforms the image from its
spatial domain representation to a different type of representation
using some well-known transform and then codes the transformed
values (coefficients). This method provides greater data compres-
sion compared to predictive methods, although at the expense of
greater computation.
A typical transform coding system consists of three closely con-
nected components namely (a) Source Encoder, (b) Quantizer and
(c) Entropy Encoder. Compression is achieved by applying a lin-
ear transform in order to decorrelate the image data, quantizing the
resulting transform coefficients and entropy coding the quantized
values.

A variety of linear transforms have been developed to this
end, which include Hadamard Transform [17], Karhunan-Loeve
Transformation [13], Discrete Cosine Transformation (DCT) [11],
Wavelet Transformation [5] [9] and, recently, the lapped biorthogo-
nal transform [14]. Each of these transforms has its own advantages
and disadvantages but the DCT stands out to be the best and has
been adopted in the JPEG still image compression standard [6].
However, the DCT requires a high computational complexity as it
involves floating point operations. For that, there have been efforts
work for finding simpler transforms[8]. Here we observe the work
of Richardson [7] who defined the (4× 4) DCT block transform
that has become the core of JPEG which is currently the world wide
standard for compression of digital images.
Nevertheless, DCT based codecs suffers from two major draw-
backs: the decay rate of DCT coefficients is too slow, and generates
infamous blocking artifacts. To cope these problems, the newest
version of JPEG, the JPEG-2000 [2], adopts wavelets for coding
standard.
Motivated by the fact that transformations play significant role in
image data compression, a new bivariate non-separable orthogonal
polynomials based transform coding technique for images is pre-
sented in this paper. The motivation behind using non-separable
transform is that separable image representations have restrictions
on maximizing coding gain because they have less freedom of pa-
rameters than non-separable ones [10] [16]. The important steps
involved in the proposed coding work are: first, a class of wavelet
functions obtained from bivariate orthogonal polynomials basis is
proposed. Then, from the proposed wavelet functions, an image
representation is proposed. After the proposed transformation, the
resulting coefficients are threshold coded with a scalar quantization
procedure and entropy coded with VLC tables as in JPEG.
It is to be noted that, recently, an approach for image coding that
is based on orthogonal polynomials has been proposed in [15]. In
fact, the authors of [15] presented a polynomial operator which is
used to define a new transform coding approach. This polynomial
operator is constructed from 1D orthogonal polynomials and is used
to define an image transform. Our approach differs from this latter
in that we do not define a polynomial operator. We rather have used
bivariate orthogonal polynomials to construct 2D wavelet functions
and to define a multiresolution wavelet-like image transform.
The rest of the paper is organized as follows: in section 2 a descrip-
tion of the wavelet functions that are defined from bivariate orthog-
onal polynomial basis is given. In section 3 we present the image
decomposition using these wavelet functions and the compression
scheme. Section 4 is devoted for experimental results. Finally, sec-
tion 5 draws some concluding remarques.

2. ORTHOGONAL POLYNOMIALS BASED WAVELET
FUNCTIONS

In [1], Blaivas showed, by investigating retinal receptive fields, that
orthogonal polynomials have certain properties that coincide with
the HVS. Within the framework suggested by Blaivas, visual anal-
ysis in the retina can be regarded as a process of expansion in or-
thogonal polynomials basis. Motivated by this property we propose
in this section a 2D non-separable wavelet function. The wavelet
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Figure 1: kernel functions using: (a) Legendre polynomial of de-
gree 32, x0 = 0,y0 = 0, (b) Hermite polynomial of degree 32,
x0 = 0.3,y0 = 0.2

functions presented here are an extension of the wavelets proposed
by Fischer et al. in [4] for the case of 2D. First we describe how
to generate bivariate orthogonal polynomials and then we define the
2D wavelet functions.

2.1 Bivariate polynomials

A bivariate polynomial can be defined by

PK,L (x,y) =
K

∑
k=0

L

∑
l=0

γk,l (x)
k (y)l (1)

where K +L is the polynomial degree. Then we consider the scalar
product

〈 f1, f2〉 =
∫ ∫

Ω
f1 (x,y) f2 (x,y)w(x,y)dxdy (2)

with w the weighting function and Ω the image domain.
Using the three terms recurrence, we can create an orthogonal poly-
nomials basis by using an orthogonalization procedure:

⎧⎨
⎩

P−1, j (x,y) = 0, Pi,−1 (x,y) = 0 , P0,0 (x,y) = 1
Pi+1, j (x,y) =

(
x−λi+1, j

)
Pi, j (x,y)−μi+1, jPi−1, j (x,y)

Pi, j+1 (x,y) =
(
y−λi, j+1

)
Pi, j (x,y)−μi, j+1Pi, j−1 (x,y)

(3)

where λ and μ are two coefficients defined by

λi+1, j = 〈xPi, j ,Pi, j〉
〈Pi, j ,Pi, j〉 λi, j+1 = 〈yPi, j,Pi, j〉

〈Pi, j,Pi, j〉
μi+1, j = 〈Pi, j ,Pi, j〉

〈Pi−1, j ,Pi−1, j〉 λi, j+1 = 〈Pi, j,Pi, j〉
〈Pi, j−1,Pi, j−1〉

(4)

2.2 Wavelet functions
Let VK,L be the space formed by the set of orthogonal polynomials
PK,L, i.e. VK,L := span

{
P0,0,P0,1, ......,PK,L

}
. For a given fixed

position in Ω: (x0,y0) ∈ Ω, a kernel function Γk,l(x0,y0) can be
defined by using the Christoffel-Darboux formula:

Γk,l (x0,y0) =
2
[
PT
k,l(x0 ,y0)Ak+1,lPk+1,l (x,y)−PT

k+1,l(x0 ,y0)AT
k+1,l Pk,l (x,y)

]

(x−x0)−(y−y0)

=
K
∑

k=0

L
∑

l=0
PT

k,l (x0,y0)Pk,l (x,y)
(5)

where Ak,l =
〈
Pk−1,l ,Pk,l

〉
.

Figure 1 shows some examples of kernel functions derived from
Legendre polynomial basis (weight function (w(x,y) = 1)) and Her-
mite basis (w = e(−x2−y2)). These basis are obtained by using equa-
tions (2), (3) and (4).

Equation (5) indicates that the kernel polynomials are localized
around (x0,y0). Motivated by this property we define scaling func-
tions as 2D kernel polynomials, i.e.

(a) (b)

Figure 2: Legendre wavelet functions: (a)ϕ32,32(x,y,0,0) and (b)
ϕ16,16(x,y,0.5,0.5)

ϕk,l (x,y,x0,y0) = Γk,l (x0,y0) =
K

∑
k=0

L

∑
l=0

PT
k,l (x0,y0)Pk,l (x,y) (6)

It is to be noted that ϕk,l’s form a basis for VK,L. In fact it
has been shown in [3] that kernel functions are the fundamental
polynomial of Lagrange interpolation. As a result, they are linearly
independent.
Let

W2K,2L = V2K,2L −VK,L =
{

PK+1,L+1,PK+2,L+2, ..,P2K,2L
}

(7)

Then, a wavelet function can be defined as follows:

ψK,L (x,y,x0,y0) = ϕ2K,2L (x,y,x0,y0)−ϕK,L (x,y,x0,y0) (8)

Figure 2 shows some examples of kernel functions derived from
Legendre polynomial basis.

We represent in the following section an image representation
by using the bivariate polynomial based wavelet and scaling func-
tions.

3. BIVARIATE POLYNOMIAL-BASED IMAGE
TRANSFORM

The purpose of this section is to describe reconstruction and de-
composition algorithms using functions defined in the previous sec-
tion. The schemes are based on the space representation V2K,2L =
VK,L ⊕WK,L. A repeated application of this step would result in a
multiresolution of a weighted L2-space. To decompose an image
I(x,y) in V2K,2L one has first to approximate I by a suitable function
I2K,2L ∈V2K,2L as follows

I2K,2L =
K

∑
k=0

L

∑
l=0

a2K,2Lϕ2K,2L (x,y) (9)

where

a2K,2L =

〈
I,ϕ2K,2L

〉
〈
ϕ2K,2L,ϕ2K,2L

〉 (10)

similarly, wavelet coefficients can be obtained by

b2K,2L =

〈
I,ψ2K,2L

〉
〈
ψ2K,2L,ψ2K,2L

〉 (11)

In the next subsection, the inter-scale relationship is developed.

3.1 Inter-scale relationship

We should notice first that moving from one scale to another
(from VK,L to V2K,2L) is performed by adding the polynomials
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PK+1,L...P2K,L+1...P2K,2L to the space VK,L.
Since ϕ2K,2L = ϕK,L +ψK,L, equation (9) can be written as:

a2K,2L =
K

∑
k=0

L

∑
l=0

aK,LϕK,L +
2K

∑
k=K+1

2L

∑
l=L+1

bK,LψK,L (12)

Let the coefficients aK,L and bK,L be given, then the reconstruction
can be obtained by using equation (12) and the decomposition can
be obtained by

aK,L =

〈
a2K,2L,ϕK,L

〉
〈
ϕK,L,ϕK,L

〉 , bK,L = 〈b2K,2L,ψK,L〉
〈ψK,L,ψK,L〉 (13)

In the next subsection, some properties of this decomposition are
presented.

3.2 Properties

In this subsection, we relate the transform presented previously to
the classical concept of multiresolution analysis due to Mallat and
Meyer. We should notice here that the major difference between the
decomposition approach presented here and the classical wavelet
transform is that, in our case, the scaling and wavelet functions are
not the same as we move from one scale to another. Remember that
moving from one scale to another is accomplished by doubling the
order of the highest polynomial in the space V and then computing
the kernel and the wavelet functions. However, some of the mul-
tiresolution properties can still be identified:
Property 1: if f (x,y) ∈VK,L then f (2x,2y) ∈V2K,2L.
This in fact follow up from the property of the kernel function that
are the fundamental polynomial of Lagrange interpolation. So dilat-
ing the kernel function by 2 enlarges the details by 2 and guarantees
that it defines an approximation at the coarsest resolution.
Property 2: VK,L ⊂V2K,2L.
This is evident since VK,L = {P0,0,P0,1, ...,P1,0....PK,L} and V2K,2L =
{P0,0,P0,1, ....Pn1,n2 ......,P2n1,2n2}, then Vn1 ,n2 ⊂V2n1,2n2 .

Property 3:
+∞⋃
−∞

Vn1,n2 is dense in L2.

In other words, when the resolution goes to infinity, this property
imposes that the signal approximation converges to the original sig-
nals. This also holds for our case since the kernel functions are
interpolation polynomials and, therefore, the regularity of the ap-
proximations increases as we double the degree of the highest poly-
nomial so that at infinity the approximation converges to the original
signal.

Property 4:
+∞⋂
−∞

Vn1,n2 = {0}.

In other worlds, when the resolution tends to 0 implies that we lose
all the details of the signal. In our case when the resolution tends to
zero the scaling function will be constant (the order of the polyno-
mial is null) and therefore, the projection of the signal onto V is a
constant. As a result we lose the signal details.

3.3 Quantization and bit allocation

After computing the proposed 2D orthogonal polynomials based
transform, the transform coefficients are coded. To this end, we use
quantization to reduce the number of bits needed to store the ob-
tained coefficient by reducing the precision (this step is performed
on both wavelet and approximation coefficients). The quantization
is implemented using a quantization matrix, whose formula, as in
JPEG is given below:

Quantized value(x,y) = round

[
TK,L (x,y)

Quantum(x,y)

]
(14)

where TK,L (x,y) is either aK,L or bK,L. The quantum value matrix
Quantum(x,y) is obtained through the quality factor. The quality
factor depends on the desired quality of the reconstructed image

vis-à-vis the compression ratio.
In general, the human eye is good at seeing small differences in
brightness over a relatively large area, but not so good at distin-
guishing the exact strength of a high frequency brightness variation.
This allows to reduce the amount of information in the high fre-
quency components. This is done by simply choosing a quality fac-
tor that can elegantly discard the obtained high frequency wavelet
coefficients. In other words, when the quality is high, the quantum
value corresponding to the higher frequency wavelet coefficient po-
sitions shall be high so that the quantized value is reduced to zero.
Thus, the quantum value (ranging from 1 to 25) determines the step
size.
After performing the quantization, a bit allocation scheme using
variable length coding is performed on the obtained coefficients.
For this purpose, the quantized coefficients are reordered using
zigzag scanning to form a 1D sequence.
Since the approximation coefficients aK,L of the proposed orthog-
onal polynomials based coding scheme have high magnitudes,
we perform a difference pulse code modulation (DPCM). Conse-
quently, the first element of the zigzag sequence represents the dif-
ference pulse code modulated aK,L value and among the remain-
ing wavelet coefficients bK,L, the non-zero wavelet coefficients are
Huffman coded using variable length code (VLC) that defines the
value of the coefficients and the number of preceding zeros. For
this purpose, we used the standard VLC tables of the JPEG baseline
system.
Finally, the compressed image can be decompressed by using a
look-up table. First, the rearranged array of transform coefficients is
reordered into 2D block from the 1D regenerated zigzag sequence
with dequantization. Then, we reconstruct the sub image under
analysis by using the proposed transform defined in the previous
subsection.
The performance of the proposed scheme is evaluated in the next
section.

4. EXPERIMENTAL RESULTS

The proposed transform coding scheme has been experimented and
compared with other image compression standards, namely, the
JPEG (with arithmetic coding options), JPEG2000 (without visual
weighting and visual masking), the JPEG-XR/HDPHOTO [14] and
with the nonseparable 2D wavelet-based coding scheme proposed
in [16] with entropy-constrained vector quantization (ECVQ). For
Jpeg2000 and Jpeg-XR we have used the softwares or source codes
available in [20] and [19] respectively. The JPEG software used
is the one provided by the Independent JPEG Group [21]. Our
compression scheme, including the quantization and entropy cod-
ing, was implemented using Matlab .
The set of image used for the experiments is from the ISO images
originally used for JPEG-XR evaluation. Figure 3 shows the three
images used for illustration in this paper. The Multiscale Structural
Similarity Index (M-SSIM) [18] and the Visual Difference Predictor
(VDP) [12] metrics are used to evaluate the quality of the decoded
images. The M-SSIM judges how irritating image artifacts gener-
ated by the compression technology are, and VDP predicts whether
these artifacts are detectable. Results are found in Fig. 4 for the
three images of figure 3 and for three types of polynomials (Legen-
dre, Tchebychev and Hermite). Both M-SSIM as well as VDP have
been plotted in the logarithmic domain, i.e. the first set of graphs
shows −20log(1−MSSIM), the second −20log(r) where r is the
ratio of pixels the VDP standard observer would detect as different
with a probability of p ≥ 75%. Note that a M-SSIM index of 1 in-
dicates a perfect match, which will be mapped to ∞ in our plots. As
we can see, our approach achieved higher quality results than JPEG
baseline and JPEG-XR baseline. However, better quality is obtained
by using JPEG2000. The approach proposed in [16] achieved better
SSIM and VDP scores than our approach for the case of Chebychev
and Legendre polynomials.
However, better scores are obtained with our approach with Hermite
2D polynomials.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: M-SSIM vs bpp graphs: (a), (b) and (c) and VDP vs bpp graphs: (d), (e) and (f) for the "honolulu cathedral", "oahu waimea2" and
"waikiki at night" images respectively
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(a)

(b)

(c)

Figure 3: Test images: (a) "honolulu cathedral", (b) "oahu
waimea2" and (c) "waikiki at night"

5. CONCLUSION

Bivariate orthogonal polynomials have been utilized to propose a
new transform coding scheme. First we develop a wavelet-like
transform from polynomial basis to propose a transform coding
technique.
After applying the proposed transformation, the transform coeffi-
cients are scalar quantized and subjected to bit allocation scheme
using variable length coding as in JPEG baseline system.
The performance of the proposed transform coding is reported by
computing different quality assessment metrics and is also com-
pared with other coding standard.
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