
ALIASING EFFECTS IN SAMPLING SPECTRALLY CORRELATED PROCESSES

Antonio Napolitano
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ABSTRACT
In this paper, the problem of sampling continuous-time spec-
trally correlated (SC) processes is addressed. SC processes
have Loève bifrequency spectrum with spectral masses con-
centrated on a countable set of support curves. This
class of nonstationary processes extends that of the almost-
cyclostationary processes and occurs in wide-band mobile
communications. The class of the discrete-time SC pro-
cesses is introduced and characterized. It is shown that
such processes can be obtained by uniformly sampling the
continuous-time SC processes. Sampling theorems are pre-
sented and a sufficient condition to avoid aliasing in the
whole bifrequency domain is provided.

1. INTRODUCTION

For wide-sense stationary processes no correlation exists be-
tween spectral components at distinct frequencies. Thus,
they have Loève bifrequency spectrum [11] with support
contained in the main diagonal of the bifrequency plane. The
density of the Loève bifrequency spectrum on such diagonal
is coincident with the power spectrum. The presence of spec-
tral correlation between spectral component at distinct fre-
quencies is an indicator of the nonstationarity of the process.
In particular, when correlation exists only between spectral
components separated by quantities belonging to a countable
set of values (called cycle frequencies), the process is said
to be almost-cyclostationary (ACS) or almost-periodically
correlated. In such a case the Loève bifrequency spectrum
has support contained in lines parallel to the main diagonal
and the autocorrelation function is an almost-periodic func-
tion of time whose (generalized) Fourier series expansion has
frequencies coincident with the cycle frequencies [6]. ACS
processes occur in many fields of application. In particu-
lar, almost all modulated signals adopted in communications,
radar, and telemetry can be modeled as ACS [6].

A new class of nonstationary stochastic processes, the
spectrally correlated (SC) processes, has been introduced and
characterized in [14]. SC processes exhibit Loève bifre-
quency spectrum with spectral masses concentrated on a
countable set of support curves in the bifrequency plane.
Thus, ACS processes are obtained as a special case of SC
processes when the support curves are lines with unit slope.
In communications, SC processes are obtained when ACS
processes pass through Doppler channels that operate fre-
quency warping on the input signal [4]. For example, let
us consider the case of relative motion between transmit-
ter and receiver in the presence of moving reflecting ob-
jects. If the involved relative radial speeds are constant and
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the product signal-bandwidth times data-record length is not
much smaller than the ratios between the medium propa-
gation speed and the radial speeds, the resulting multipath
Doppler channel introduces a different complex gain, time-
delay, frequency shift, and nonunit time-scale factor for each
path [14]. Since the time-scale factors are non unit, when an
ACS process passes through such a channel, the output sig-
nal is SC. Further situations where nonunit time-scale fac-
tors should be accounted for can be encountered in radar and
sonar applications [22, pp. 339-340], communications with
wide-band and ultra wide-band (UWB) signals [8], [20], and
space communications [18]. In all these cases, SC processes
are appropriate models for the involved signals [14]. Finally,
in [19] it is shown that fractional Brownian motion (fBm)
processes have Loève bifrequency spectrum with spectral
masses concentrated on three lines of the bifrequency plane.

In [14], continuous-time SC processes are introduced and
characterized and the problem of the spectral correlation den-
sity estimation for SC processes is addressed in the case of
unknown support curves. In [15], the case of known sup-
port curves is treated. The special case of support lines is
addressed in [10].

In this paper, the property of strict band-limitedness is
analyzed for continuous-time SC processes. Then, discrete-
time SC processes are introduced and characterized. It is
shown that an SC discrete-time process can be obtained by
uniformly sampling a continuous-time SC process and its
Loève bifrequency spectrum is constituted by the superpo-
sition of replicas of the Loève bifrequency spectrum of the
continuous-time SC process. It is shown that for strictly
band-limited SC processes a sufficient condition to avoid
non overlapping replicas in the Loève bifrequency spectrum
is that the sampling frequency fs is at least two times the
process bandwidth which is the classical Shannon condi-
tion. However, unlike the case of the wide-sense station-
ary processes, this condition is not sufficient to assure that
the mappings νi = fi/ fs, i = 1,2, between the frequencies
fi ∈ [− fs/2, fs/2] of the Loève bifrequency spectrum of the
continuous-time process and the frequencies νi of the Loève
bifrequency spectrum of the discrete-time process hold for
νi ∈ [−1/2,1/2], for every support curve. A sufficient con-
dition is derived in the paper and known results on the sam-
pling frequency for ACS processes [6] are obtained as special
cases.

2. CONTINUOUS-TIME SPECTRALLY
CORRELATED PROCESSES

Definition 2.1 Let xa(t) be a continuous-time complex-
valued second-order harmonizable stochastic process. Its
Loève bifrequency spectrum [11], also called dual-frequency
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spectrum [19], is defined as

Sxxxa( f1, f2), E{Xa( f1)X∗a ( f2)} (1)

where
Xa( f ),

∫
R

xa(t) e− j2π f t dt (2)

is the Fourier transform of xa(t) and is assumed to exist (at
least) in the sense of distributions [24] for almost all sam-
ple paths of xa(t). See [14] for a link of this representation
with the Cramer representation of stochastic processes in the
spectral domain. In (1), superscript ∗ denotes complex con-
jugation and subscript xxxa , [xax∗a]. �

For complex-valued processes, also the second-order
spectral moment E{Xa( f1)Xa( f2)} must be considered for
a complete second-order characterization [21]. Results for
E{Xa( f1)Xa( f2)} will not be considered here.

Definition 2.2 Let xa(t) be a continuous-time complex-
valued second-order harmonizable stochastic process. The
process is said to be spectrally correlated [14] if its Loève
bifrequency spectrum can be expressed as

Sxxxa( f1, f2) = ∑
k∈I

S(k)
xxxa ( f1)δ

(
f2−Ψ

(k)
xxxa ( f1)

)
(3)

where δ (·) is Dirac delta, I is a countable set, the curves
f2 = Ψ

(k)
xxxa ( f1) describe the support of Sxxxa( f1, f2), and the

complex-valued functions S(k)
xxxa ( f1), called spectral correla-

tion density functions, represent the density of the Loève
spectrum on its support curves. The real-valued functions
Ψ

(k)
xxxa (·) can always be chosen invertible. �

In the special case of linear support curves with unit
slope, SC processes reduce to ACS processes. For ACS
processes the separation between correlated spectral compo-
nents assumes values belonging to a countable set, the set
of cycle frequencies {αk}, which are also the frequencies
of the (generalized) Fourier series expansion of the almost-
periodically time-variant statistical autocorrelation function
[6]. That is, for ACS processes, Ψ

(k)
xxxa ( f1) = f1−αk, the spec-

tral correlation density functions S(k)
xxxa ( f1) are coincident with

the cyclic spectra Sαk
xxxa ( f1), and the Loève bifrequency spec-

trum is given by

Sxxxa( f1, f2) = ∑
k∈I

Sαk
xxxa ( f1)δ ( f2− f1 +αk) . (4)

Note that the class of the ACS processes turns out to be
the intersection between two wider classes of nonstation-
ary processes that both generalize the class of the ACS pro-
cesses: The class of the SC processes and that of the gener-
alized almost-cyclostationary (GACS) processes [16], [17].
The GACS processes exhibit an almost-periodically time-
variant statistical autocorrelation function whose (general-
ized) Fourier series expansion has both coefficients and fre-
quencies (cycle frequencies) depending on the lag parameter.
In the special case of ACS processes the cycle frequencies are
independent of the lag parameter.

SC processes are encountered in several applications in
communications. When an ACS signal is transmitted by a

moving source with constant relative radial speed with re-
spect to two sensors, then the received signals on the two
sensors are jointly SC but not jointly ACS [1]. Moreover,
reverberation mechanisms generate coherency relationships
ensemblewise between spectral components [13]. In [14],
it is shown that an ACS signal passing through a multipath
Doppler channel gives rise to an output SC signal when, for
each path, the relative radial speeds between transmitter, re-
ceiver, and reflecting moving objects can be considered con-
stant within the observation interval. In such a case, for
the input complex-envelope signal xa(t), the output complex-
envelope ya(t) is given by

ya(t) =
K

∑
k=1

ak xa(skt−dk) e j2πνkt (5)

where, for each path of the channel, ak is the complex gain,
dk the delay, sk the time-scale factor, and νk the frequency
shift. In [14], it is shown that the Loève bifrequency spec-
trum of ya(t) has support in the bifrequency plane consti-
tuted by lines with slopes sk2/sk1 , k1,k2 ∈ {1, . . . ,K}. The
time-scale factor sk can be considered unitary if the condi-
tion BT � c/vk is fulfilled, where B is input-signal band-
width, T is the data-record length, c is the medium propaga-
tion speed, and vk is the relative radial speed for the kth-path
[22, pp. 240-242]. If sk ' 1 ∀k, then the multipath Doppler
channel can be modeled as linear almost-periodically time
variant and the output signal ya(t) is ACS. However, wide-
band modulated signals and mobile environments of interest
in modern communications systems give rise to time-variant
channels with time-scale factors that cannot be considered
unitary even for moderate speeds and/or data-record lengths
[14]. Further cases of interest where BT 6� c/vk and, hence,
nonunit time-scale factors should be accounted for, can be
encountered in wide-band MIMO communication systems,
radar and sonar applications [22, pp. 339-340], time-delay
and Doppler estimation of wide band signals [8], UWB chan-
nel modeling [20], and space communications [18]. SC
processes with nonlinear support curves arise in the pres-
ence of linear time-variant transformations operating nonlin-
ear frequency-warping of the input signals [3], [4]. Cross
spectral analysis by frequency warping [2], [5], [12], [23]
gives rise to jointly SC processes. Finally, fBm processes
and their linear time-invariant filtered versions are SC pro-
cesses with Loève bifrequency spectrum concentrated on the
lines f2 = f1, f1 = 0, and f2 = 0 [19].

It is well known that for wide-sense stationary processes,
the strictly band-limitedness condition allows to avoid alias-
ing after uniform sampling, provided that the sampling fre-
quency exceeds twice the process bandwidth. Nonstationary
processes should be carefully handled. In particular, not ev-
ery nonstationary structure is compatible with the band lim-
itedness property. ACS processes can be strictly bandlimited
[7]. In contrast, in [16], [17] it is shown that the GACS pro-
cesses cannot be strictly bandlimited . In the sequel it will
be shown that SC processes can be strictly band-limited. For
this purpose, the definition of strict band-limitedness is given
for the general case of nonstationary processes. Then a char-
acterization of the Loève bifrequency spectrum of strictly
band-limited SC processes is provided.

Definition 2.3 A continuous-time nonstationary stochastic
process xa(t) is said to be strictly band-limited with band-
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width B if B is the smallest value such that

xa(t)⊗hlp(t) = xa(t) (6)

for almost all sample paths, where hlp(t) is the impulse re-
sponse function of the ideal low-pass filter with harmonic
response Hlp( f ) = rect( f /2B). �

Theorem 2.1 Let xa(t) be a strictly band-limited SC process
with bandwidth B. It results that ∀k ∈ I

S(k)
xxxa ( f1) = 0 if max

{
| f1|,

∣∣∣Ψ(k)
xxxa ( f1)

∣∣∣}> B (7)

In addition, Ψ
(k)
xxxa ( f1) can be assumed to be zero for f1 6∈

[−B,B].
Conversely, if (7) holds, then xa(t) is strictly bandlimited

with bandwidth B.

Proof:

The strictly band-limitedness condition (6), considered in the
frequency domain, for a SC process implies that

E
{

Hlp( f1)Xa( f1)Hlp( f2)X∗a ( f2)
}

= E{Xa( f1)X∗a ( f2)} (8)

from which, accounting for (3), it follows that

Hlp( f1)Hlp( f2) ∑
k∈I

S(k)
xxxa ( f1)δ

(
f2−Ψ

(k)
xxxa ( f1)

)
= ∑

k∈I
S(k)

xxxa ( f1)δ
(

f2−Ψ
(k)
xxxa ( f1)

)
(9)

Thus, it necessarily results that ∀k ∈ I{
f1 6∈ [−B,B] ⇒ S(k)

xxxa ( f1) = 0
f1 ∈ [−B,B] ⇒ f2 6= Ψ

(k)
xxxa ( f1) ∀ f2 6∈ [−B,B]

(10)

that is

f1 6∈ [−B,B] or Ψ
(k)
xxxa ( f1) 6∈ [−B,B] ⇒ S(k)

xxxa ( f1) = 0 (11)

from which (7) immediately follow. Furthermore, account-
ing for (11), form (3) it follows that for strictly bandlimited
SC processes the functions Ψ

(k)
xxxa ( f1) are undetermined for

f1 6∈ [−B,B]. Thus, Ψ
(k)
xxxa ( f1) = 0 for f1 6∈ [−B,B] can be

assumed in order to have these functions with compact sup-
port.

The proof of the converse is straightforward. �

3. DISCRETE-TIME SPECTRALLY CORRELATED
PROCESSES

Definition 3.1 Let x(n) be a discrete-time complex-valued
second-order harmonizable stochastic process. Its Loève
bifrequency spectrum is defined as

S̃xxx(ν1,ν2), E{X(ν1)X∗(ν2)} (12)

where
X(ν), ∑

n∈Z
x(n) e− j2πνn (13)

is the Fourier transform of x(n) and is assumed to exist (at
least) in the sense of distributions [24] for almost all sample
paths of x(n). Subscript xxx denotes [xx∗]. �

Definition 3.2 The discrete-time process x(n) is said to be
spectrally correlated if its Loève bifrequency spectrum can
be expressed as

S̃xxx(ν1,ν2) = ∑
k∈I

S̃(k)
xxx (ν1) δ̃

(
ν2− Ψ̃

(k)
xxx (ν1)

)
(14)

where I is a countable set, δ̃ (ν),∑p∈Z δ (ν− p), and S̃(k)
xxx (ν)

and Ψ̃
(k)
xxx (ν) are complex- and real-valued, respectively, pe-

riodic functions of ν with period 1. �

From (14) it follows that discrete-time SC processes have
spectral masses concentrated on the countable set of support
curves

ν2 mod 1 = Ψ̃
(k)
xxx (ν1) k ∈ I (15)

where mod 1 is the modulo 1 operation with values in
[−1/2,1/2). Moreover, the spectral mass distribution is pe-
riodic with period 1 in both frequency variables.

Let us observe that the functions in the right-hand side
of (14) in general are not univocally determined. By oppor-
tunely selecting the support of the functions S̃(k)

xxx (ν1), the cor-
responding functions ν2 = Ψ̃

(k)
xxx (ν1) can always be chosen to

be locally invertible in intervals [p− 1/2, p + 1/2), with p
integer. In addition, since Ψ̃

(k)
xxx (ν1) are in the argument of

a periodic delta, they can always be chosen with values in
[−1/2,1/2).

Every periodic function Ψ̃
(k)
xxx (ν) can be expressed as the

periodic replication, with period 1, of a L1(R) or L2(R) gen-
erator function Ψ

(k)
xxx (ν) [9]:

Ψ̃
(k)
xxx (ν) = ∑

p∈Z
Ψ

(k)
xxx (ν− p) . (16)

The generator, in general, is not univocally determined and
can have support of width larger than 1. Let us consider
the (unique) generator with compact support contained in
[−1/2,1/2). That is, such that Ψ

(k)
xxx (ν) = Ψ̃

(k)
xxx (ν), ν ∈

[−1/2,1/2). With this choice for the generator, the follow-
ing useful expression holds for the periodic delta train in
(14):

δ̃

(
ν2− Ψ̃

(k)
xxx (ν1)

)
= ∑

p2∈Z
δ

(
ν2− p2− ∑

p1∈Z
Ψ

(k)
xxx (ν1− p1)

)
= ∑

p2∈Z
∑

p1∈Z
δ

(
ν2− p2−Ψ

(k)
xxx (ν1− p1)

)
. (17)

4. SAMPLING THEOREMS

In this section, a sampling theorem for SC processes is
stated to link the Loève bifrequency spectrum of the sam-
pled discrete-time process with that of the continuous-time
process. Furthermore, in the case of strictly band-limited
continuous-time SC processes, sufficient conditions on the
sampling frequency to avoid aliasing effects are provided.

Theorem 4.1 Let xa(t) be a continuous-time SC process
with Loève bifrequency spectrum (3) and let

x(n), xa(t)|t=nTs n ∈ Z (18)
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be the discrete-time process obtained by uniformly sampling
xa(t) with sampling period Ts , 1/ fs. The process x(n) is a
discrete-time SC process with Loève bifrequency spectrum
given by

E
{

X(ν1)X∗(ν2)
}

= ∑
k∈I

1
Ts

∑
p1∈Z

S(k)
xxxa ((ν1− p1) fs)

∑
p2∈Z

δ

(
ν2− p2−Ψ

(k)
xxxa ((ν1− p1) fs)Ts

)
(19)

Proof:

The Fourier transform (13) of the sequence x(n) is linked to
the Fourier transform (2) of the continuous-time signal xa(t)
by the relationship [9, Sec. 9.5]

X(ν) =
1
Ts

∑
p∈Z

Xa((ν− p) fs) . (20)

Thus, accounting for (3) it results that

E
{

X(ν1)X∗(ν2)
}

=
1

T 2
s

∑
p1∈Z

∑
p2∈Z

E
{

Xa((ν1− p1) fs)X∗a ((ν2− p2) fs)
}

=
1

T 2
s

∑
p1∈Z

∑
p2∈Z

∑
k∈I

S(k)
xxxa ((ν1− p1) fs)

δ

(
(ν2− p2) fs−Ψ

(k)
xxxa ((ν1− p1) fs)

)
(21)

from which (19) follows by a scale change in the argument
of the Dirac delta [24, Sec. 1.7]. �

From Theorem 4.1 it follows that the discrete-time pro-
cess x(n) is SC. In fact, its Loève bifrequency spectrum ex-
hibits spectral masses concentrated on a countable set of sup-
port curves and is periodic with period 1 in booth variables
ν1 and ν2. Furthermore, at every fixed double (ν1,ν2) ∈
[−1/2,1/2)2, nonzero contribution to the Loève bifrequency
spectrum of x(n) is given by all terms in (19) such that
(ν2 − p2) fs = Ψ

(k)
xxxa ((ν1 − p1) fs) and S(k)

xxxa ((ν1 − p1) fs) 6= 0
for some (p1, p2,k) ∈ Z×Z× I. That is, aliasing effects are
present. Specifically, the support curves in the bifrequency
principal domain (ν1,ν2) ∈ [−1/2,1/2)2 are described by
the set

S ,
⋃
k∈I

⋃
p1∈Z

{
(ν1,ν2) ∈ [−1/2,1/2)2 :

ν2 =
[
Ψ

(k)
xxxa ((ν1− p1) fs)Ts

]
mod 1,

S(k)
xxxa ((ν1− p1) fs) 6= 0

}
. (22)

The set S can contain clusters of curves or can be dense in
the open square (−1/2,1/2)2 if, for some ν1 ∈ [−1/2,1/2),
fs is incommensurate with a countable infinity of values of
Ψ

(k)
xxxa ((ν1 − p1) fs), k ∈ I, p1 ∈ Z, and in correspondence

of these values the spectral densities S(k)
xxxa ((ν1 − p1) fs) are

nonzero (see [10] for the special case of support lines).

Theorem 4.2 Let xa(t) be a strictly band-limited continuous-
time SC process with Loève bifrequency spectrum (3) and
bandwidth B. If fs > 2B, then the process x(n) defined in
(18) is a discrete-time SC process with Loève bifrequency
spectrum given by (14) with

S̃(k)
xxx (ν1) ,

1
Ts

∑
p∈Z

S(k)
xxxa ((ν1− p) fs) (23)

Ψ̃
(k)
xxx (ν1) , Ts ∑

p∈Z
Ψ

(k)
xxxa ((ν1− p) fs) (24)

and sums in (23) and (24) are with nonoverlapping replicas.

Proof:

Under the assumption fs > 2B, it results that for each k ∈
I and for every (p1, p2) ∈ Z2 there exists only one double
(ν1,ν2) ∈ [p1− 1/2, p1 + 1/2)× [p2− 1/2, p2 + 1/2) such
that (ν2− p2) fs = Ψ̃

(k)
xxxa ((ν1− p1) fs) in the argument of the

Dirac delta in the right-hand side of (21). Consequently, (21)
can be written as

E
{

X(ν1)X∗(ν2)
}

= ∑
k∈I

[ 1
Ts

∑
p1∈Z

S(k)
xxxa ((ν1− p1) fs)

]
1
Ts

∑
p2∈Z

∑
p1∈Z

δ

(
(ν2− p2) fs−Ψ

(k)
xxxa ((ν1− p1) fs)

)
= ∑

k∈I

[ 1
Ts

∑
p1∈Z

S(k)
xxxa ((ν1− p1) fs)

]
∑

p2∈Z
δ

(
ν2− p2− ∑

p1∈Z
Ψ

(k)
xxxa ((ν1− p1) fs)Ts

)
(25)

from which (14) with (23) and (24) immediately follow. In
addition, since replicas in (25) are separated by 1 in both
variables ν1 and ν2 and the functions (of ν1) S(k)

xxxa (ν1 fs) and
Ψ

(k)
xxxa (ν1 fs) have compact support contained in [−B/ fs,B/ fs],

condition fs> 2B assures that replicas in (23) and (24) do not
overlap. �

Under the assumption fs > 2B the relationships

S̃(k)
xxx (ν1) =

1
Ts

S(k)
xxxa (ν1 fs) , Ψ̃

(k)
xxx (ν1) = TsΨ

(k)
xxxa (ν1 fs) (26)

hold only for ν1 ∈ supp
{

S(k)
xxxa (ν1 fs)

}
which, in general, is a

proper subset of [−1/2,1/2). Thus, for SC processes, the
mappings ν1 = f1/ fs and ν2 = f2/ fs do not hold, for every
support curve, for ν1 ∈ [−1/2,1/2] and ν2 ∈ [−1/2,1/2]. In
contrast, for wide-sense stationary processes, spectral masses
are present only on the main diagonal of the bifrequency
plane and condition fs > 2B assures that the mappings ν1 =
f1/ fs and ν2 = f2/ fs hold in the whole principal domain. By
considering a more stringent condition on the sampling fre-
quency, the νi↔ fi mappings can be made valid in the whole
principal frequency domain. We have the following result.

Theorem 4.3 Let xa(t) be a strictly band-limited continuous-
time SC process with bandwidth B. If

fs > B+ max
{

B,sup
k
|Ψ(k)

xxxa (± fs/2)|
}

(27)
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where “+” or “-” sign should be taken if Ψ
(k)
xxxa (·) is increasing

or decreasing, respectively, then conditions (26) hold ∀ν1 ∈
[−1/2,1/2).

Proof: If Ψ
(k)
xxxa (·) is increasing, condition

|Ψ(k)
xxxa ( fs/2)|Ts 6 1 − B/ fs, ∀k ∈ I, assures in (25) that

for ν1 ∈ [−1/2,1/2] support curves ν2 = Ψ
(k)
xxxa (ν1 fs)Ts of

the replica with p1 = p2 = 0 can intersect support curves
of other replicas only if on these other curves the spectral
correlation density is zero. The case of Ψ

(k)
xxxa (·) decreasing is

similar. �

In the special case of ACS processes, condition (27) leads
to fs > 6B. This condition, however, can be relaxed to fs >
4B since the support curves are lines with unit slope [6], [7].

5. CONCLUSION

The class of discrete-time SC processes is introduced
and characterized and the problem of uniformly sampling
continuous-time SC processes is addressed. It is shown that
for a strictly band-limited SC process, sampling at twice the
bandwidth leads to non overlapping replicas in the Loève
bifrequency spectrum of the SC discrete-time process. How-
ever, a more stringent condition on the sampling frequency
need to be satisfied in order to assure that, for the discrete-
time process, the spectral correlation densities on the support
curves are scaled version of those of the continuous-time pro-
cess for all values of frequencies in [−1/2,1/2].
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[11] M. Loève, Probability Theory. Van Nostrand, Princeton, NJ,
1963.

[12] A. Makur and S.K. Mitra, “Warped discrete-Fourier trans-
form: Theory and applications,” IEEE Transactions on Cir-
cuits and Systems–I: Fundamental Theory and Applications,
vol. 48, n. 9, pp. 1086-1093, September 2001.

[13] D. Middleton, “A statistical theory of reverberation and sim-
ilar first-order scattered fields, Part II: Moments spectra, and
special distributions,” IEEE Transactions on Information The-
ory, vol. IT-13, July 1967.

[14] A. Napolitano, “Uncertainty in measurements on spectrally
correlated stochastic processes”, IEEE Transactions on Infor-
mation Theory, vol. 49, pp. 2172-2191, September 2003.

[15] A. Napolitano, “Mean-square consistent estimation of the
spectral correlation density for spectrally cor- related stochas-
tic processe”, in Proc. of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2007),
Honolulu, Hawaii, USA, April 16-20, 2007.

[16] A. Napolitano, “Estimation of second-order cross-moments
of generalized almost-cyclostationary processes”, IEEE
Transactions on Information Theory, vol. 53, n. 6, pp. 2204-
2228, June 2007.

[17] A. Napolitano, “Discrete-time estimation of second-order
statistics of generalized almost-cyclostationary processes,”
IEEE Transactions on Signal Processing, in press, 2009.

[18] J. Oberg, “Titan calling,” IEEE Spectrum, vol. 41, pp. 28-33,
October 2004.
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