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ABSTRACT

As the technology becomes cheaper and industries are con-
scious of the quality control importance, ultrasonic inspec-
tion becomes more popular. However, automatic inspection
systems instead of manual ones should be designed if a suc-
cessful implantation is desired. Signal processing algorithms
play an important role on the designing of these systems.
Unfriendly environment found in production lines cause that
these systems should make intensive use of noise reduction
algorithms. This work deals with studying the best algorithm
for impulsive noise reduction in an industrial environment.
A review of the typical impulsive noise reduction systems is
done and particularized for the described situation. Finally,
computational aspects are analyzed and some solutions are
proposed.

1. INTRODUCTION

In industrial applications of non-destructive testing using ul-
trasounds is very frequent to find alternating current (AC)
motors. These AC motors are commonly running in the
vicinity of non-destructive testing equipment and are used for
example for operating transport belts. The rotational speed
of this engines is controlled by the Variable Frequency Drive
(VFD). The VFD is a nonlinear device that introduces a large
amount of noise that is picked up by the ultrasonic receiver
electronics difficulting the flaw detection. In some situations
the noise presence could be minimized with a good hard-
ware and shielding design. However there are other situ-
ations where it is not possible to make such a design, for
instance impossibility to use relatively short cables between
the transducer and the ultrasonic pulser/ receiver. In this sit-
uations, signal processing algorithms can help to remove the
impulsive noise and facilitate the design of the defect detec-
tor. Additionally, it has to be taken into account the need of
real time algorithms in industrial systems. Production lines
work fast and the distance from product to product is in most
of the situations a few centimeters, so that fast algorithms
should be employed. In this work different algorithms for re-
ducing the impulsive noise in the ultrasonic B-scans will be
analyzed. The work will be structured as follows. In the next
section we will study and model the noise. Later in section 3
different signal processing algorithms for reducing this noise
will be proposed. In section 4 the presented algorithms will
be tested in a simulated scenario (subsection 4.1) and finally
in subsection 4.2 real examples will be shown. The work
finishes with some conclusions.
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2. ON THE MODELLING OF IMPULSIVE NOISE
IN A TRAVELLING BELT SCENARIO

Lets assume that we are doing an ultrasonic inspection of a
material that is travelling on a transport belt of a production
line. The ultrasonic transducer somehow fixed to the produc-
tion line. We will assume that the coupling of the transducer
to the inspected material is somewhat solved. We will as-
sume also that material geometry allows doing this kind of
inspection. If the ultrasonic transducer works in pulse-echo
mode, B-scans are obtained. B-scans are defined as a suc-
cessive number of captured A-scans (ultrasonic traces) for
different positions. The following experiment was done to
measure and model the effect of the ultrasonic noise in the
B-scans as a consequence of the alternating current engine.

A polyethylene rectangular box filled with distilled water
was placed on the transport belt of the production line. Dif-
ferent B-scans were acquired for different rotational speeds
of the engines. The rotational speed was controlled vary-
ing the frequency of the VFD. The VFD generates Electro
Magnetic Interferences (EMI) that couple into the receiver
electronics contaminating the B-scan in form of impulsive
noise. The ultrasonic B-scans acquired with this experiment
resemble a noisy background with a unique ultrasonic echo
due to the reflection on the top of the water tank (see figure
1). This experiment was repeated for different frequencies of
the VFD in the range fVFD = {0Hz− 50Hz}. This analysis
allows to study the impulsive noise statistics. The figure 2
shows the measured probability density function of the cou-
pled noise at the different speeds. The results obtained are
similar to what some other authors have measured [1].
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Figure 1: An acquired ultrasonic B-scan with impulsive noise
(only the backwall echo should be visible).
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Figure 2: Estimated probability density function of the im-
pulsive noise amplitude at different speeds of the VFD.

The empirically estimated distributions resemble an
exponential distribution for the impulsive noise. A
Kolmogorov-Smirnov test [2] was performed to compare im-
pulsive noise with exponential distribution. The null hypoth-
esis was that the measured noise statistics have the expected
distributions. The null hypothesis is accepted at the 95 % of
significance. It is interesting to observe in the figure 2 that
the impulsive noise amplitudes are not directly proportional
to the VFD frequency. A possible justification is based on
the fact that VFDs are nonlinear devices with an input fre-
quency of 50 Hz from the power line. The amount of non-
linearity that the VFD has to introduce to achieve a target
frequency depends on how far this frequency is from the nat-
ural frequency (50 Hz). The number of impulses were also
measured (see table 1).

Frequency : 30 Hz 40 Hz 50 Hz

Number of pulses : 4186 1460 885

Table 1: Number of impulses measured for different frequen-
cies of the VFD (different travelling belt speeds).

3. IMPULSIVE NOISE REDUCTION ALGORITHMS

A bibliographic review of the different methods employed to
remove impulsive noise in images was done. The standard
median filter [3], the weighted median filter [4, 5] and deci-
sion based median filter [6, 7] were frequently found. All this
variants try to deal with the problem that median filters re-
move very well isolated noise preserving sharp edges but de-
stroys small edges altering natural information. An interest-
ing alternative to the nonlinear median filtering can be found
in [8]. This alternative, also called the peak-and-valley filter,
is much faster than the median filter and gives comparable
results in terms of percentage of eliminated noise in typical
image processing applications [8]. Also, it is worth mention-
ing the Savitzky-Golay filters. According to [9], filters based
on these polynomials can be developed and they achieved
comparable level of noise reduction and similar edge preser-
vation on ultrasonic signals with considerably less compu-
tation time. The fundamental idea of these filters is to fit a
different polynomial to the data surrounding each data point.

The smoothed points are computed by replacing each data
point with the value of its fitted polynomial. The interest-
ing part is that the polynomial coefficients can be computed
with a linear filter. For smoothing, only one coefficient of the
polynomial is needed, so the whole process of least squares
fitting at every point becomes a simple process of applying
the appropriate linear filter at every point [9].

The designed algorithm should fulfill the following re-
quirements: reduce impulsive noise, preserve sharp edges
like those appearing in the B-scan due to large impedance
changes in the propagation of the ultrasonic signal (backwall
echo) and preserve small edges like those due to flaws, de-
fects, foreign bodies, etc. Additionally, low computational
cost was taken into account to implement a system work-
ing in real time. The noise reduction algorithms were se-
lected from the bibliography and adjusted to behave as previ-
ously described. The following Noise Reduction Algorithms
(NRA) were tested:

1. Standard median filter: 2-D median filtering of the ultra-
sonic B-scan with a 3x3 window.

2. Decision based median filter: 2-D median filtering of the
ultrasonic B-scan with a 3x3 window only for those pix-
els satisfying the condition described in equation (1). The
algorithm was implemented as described in [7].

Threshold =min

[
| b(i, j)−mH |

σH +1
,

| b(i, j)−mV |

σV +1

]
(1)

The value of the B-scan at the particular pixel is given by
b(i, j). The values mH , mV / σH , σV are the median and
standard deviation in the horizontal (1x3) / vertical (3x1)
windows around b(i, j).

3. Column-wise standard median filter: A 1-D standard me-
dian filter of order 3 operating on each column of the B-
scan.

4. Peak-and-valley filter: A 2-D filter as described in [8].

5. Row-wise Savitzky-Golay filter: A 1-D Savitzky-Golay
filter operating on each A-scan (rows of the B-scan). A
polynomial of order 3 and a frame size of 100 was em-
ployed.

The window size employed in the median algorithms and
the order of the Savitzky-Golay polynomial were chosen em-
pirically. The selected value should satisfy the condition that
small gradual echoes from foreign bodies were preserved.

4. RESULTS

4.1 Simulation study on synthetic B-scans

Envelope of the ultrasonic B-scans was modeled by discrete
2-D convolution of the binary image (X) shown in figure 3
with a 2-D Gaussian matrix (H) as described in equation
(2). The 2-D matrix (X) models the reflections: backwall
or defect reflection for instance. The matrix H models the
2-D Gaussian envelope of an isolated ultrasonic pulse [10].
Matrix H was generated using equation (3) with σi = 10,
σ j = 1 ·10−1 and (i, j) being in the range of {−20, · · · ,−20}.
We will assume that the result of the convolution is a matrix
of sizeM×N.

B = X∗H (2)
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Figure 3: Synthetic binary B-scan (X matrix).

H = h(i, j) = e
−

(
i2

2·σ2
i

+ j2

2·σ2
j

)

(3)

N = N (̃i, j̃) = φ̃ (4)

Bn = B+N (5)

Bnf = NRA[B+N] (6)

After obtaining the synthetic B-scan, impulsive noise ma-
trix (N) was generated according to equation (4). The inte-

ger random variables ĩ and j̃ were uniformly distributed in

the range {0, · · · ,M−1} for ĩ, and {0, · · · ,N−1} for j̃. The

continuous random variable φ̃ was exponential distributed as
it was measured to be in the experiment described in section
2. Finally, the matrices B and N were added according to
equation (5) and filtered with the five proposed NRAs (see
equation (6)). An illustrative result for standard median filter
algorithm can be seen in the figure 4.

The different noise reduction algorithms were tested on
the synthetic B-scans with the number of impulses chang-
ing in the measured range (table 1). In order to compare
the performance, the Signal to Noise Ratio (SNR) was calcu-
lated. The Signal was taken to be the energy of the simulated
scenario: the possible defect and backwall echo (numerator
in equation (7)). This term will be of interest for a posteri-
ori detection of the possible flaw. The remaining noise was
computed after filtering with each one of the proposed algo-
rithms. The SNR was finally computed as follows:

SNR =
∑i ∑ jB

2(i, j)

∑i ∑ j

(
B(i, j)−Bn f (i, j)

)2 . (7)

The figure 5 shows the SNR in dB, as described in equa-
tion (7), for all the tested algorithms when the number of
impulses increases. The figure shows that decision based
median filter and standard median filter achieve the high-
est noise reduction ratio in all conditions of impulsive noise.
In situations where a large amount of EMI (equivalently im-
pulsive noise) is present the differences between the studied
NRAs become lower. In all cases the peak-and-valley algo-
rithm show to be not very effective removing impulsive noise
in the simulated scenario.
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Figure 4: An example of a synthetic B-scan with impulsive
noise and after processing with the standard median filter.
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Figure 5: SNR (dB) evolution when the number of EMI im-
pulses increases for the proposed NRAs.

At this point we are going to analyze the computational
complexity of each proposed algorithm. Taking into account
that the B-scan is aM×N matrix and using a typical sorting
algorithm with good performance, the computational com-
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plexity in terms of the size list K is O(K · log(K)) [11]. Us-
ing this result, we can derive the computational complexity
for the proposed algorithms as shown in table 2. The size
list K in the table 2 should be set to K = 3 for the particular
NRA described in the section 3. The additional parameter
ρ that appears for decision based median filters (table 2) de-
pends on the noise statistics and density of impulses. This
value will be close to 1 in high density impulsive noise sce-
narios and tries to model that due to the decision rule not all
medians should be computed reducing computational com-
plexity. In the case of the Savitzky-Golay filter the process
of the least-squares fits would be laborious since it involves a
linear matrix inversion. Fortunately, we can do the fitting in
advance for fictitious data and then do the fits on the real data
just by taking linear combinations [12]. As a result of that,
the process of filtering using the Savitzky-Golay filter has the
same complexity as using a simple FIR filter (see table 2).

Algorithm : Computational Complexity

Standard median : M ·N ·O(K2logK2)

Decision median : M ·N · (O(K2logK2)ρ +O(2 ·K))

Column median : M ·N ·O(KlogK)

Peak-and-valley : M ·N ·O(K2)

Savitzky-Golay : M ·O(NlogN) 1

Table 2: Computational complexity of the different algo-
rithms (K = 3 for the NRA presented).

From the results presented in the table 2 can be derived
that the fastest algorithm is the column-wise median filter
followed by the Savitzky-Golay filter. The peak-and-valley
algorithm is computationally less complex than the standard
median filter and the decision based median filter.

4.2 On the processing of real B-scans

The experiment described in section 2 was repeated but this
time a 5 mm stainless steel piece of metal was introduced in
the water tank. The foreign body was held by a 0.1 mm of
diameter nylon line in order to keep it at a constant depth.
The ultrasonic B-scan was acquired with the VFD working
at 30 Hz. The figure 7 shows the original B-scan as well as
the processed B-scans with some of the presented noise re-
duction algorithms. The figure presents results only for the
decision based median algorithm, the column-wise standard
median filter and the Savitzky-Golay filter. The results with
the standard median filter were very similar to the decision
based median filter and have been omitted. As it was pre-
dicted in the simulations the peak and valley algorithm gave
the worst results when denoising ultrasonic B-scans under
the conditions established. It is interesting to observe that
the results with the column-wise median filter are almost as
good as the results with decision-based median algorithm.
A zoomed region of the the B-scan is shown in the figure
7 with an optimized palette to bring out the differences. In
the zoomed region it can be observed that the decision based
algorithm performs better than the column-wise. However,
differences were not as big as expected. A possible explana-
tion of this result is based on the fact that measured impul-

1We have assumed that the convolution has been done using Fast Fourier
Transform

sive noise present some degree of correlation in the tempo-
ral dimension of the B-scan and no correlation in the spatial
dimmension. The impulsive noise simulated did not present
correlation in any of the dimensions.

5. CONCLUSIONS AND FUTURE LINES

This work shows how typical impulsive noise reduction algo-
rithms can be used with excellent results to reduce the noise
produced by EMI interferences in the ultrasonic flaw detec-
tion problem. Performance in terms of eliminated noise per
computational complexity, varies among the algorithms. If
real time operation of the algorithms becomes a restriction
not all the studied techniques are equally valid.

The peak-and-valley algorithm gave the worst results in
terms of SNR on the simulated and real scenarios.

The Savitzky-Golay and the Column-wise median algo-
rithms gave poor results in simulated B-scans. However, the
Column-wise algorithm gave good results in real B-scans.
This fact, alongside the low computational cost suggests us-
ing Column-wise algorithm for real time impulsive noise re-
duction in ultrasonic B-scans.

The decision-based median filter gave the best results, in
terms of SNR, on simulated B-scans. However, when it was
applied to real B-scans results were worse than expected.
An explanation of this result is based on the fact that mea-
sured impulsive noise present some degree of correlation in
the temporal dimension of the B-scan and no correlation in
the spatial dimmension. The impulsive noise simulated did
not present correlation in any of the dimensions.

A possible future research line consists of using the ob-
tained information of the impulsive noise statistics to design
variants of median filters tailored to exploit this knowledge.
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Figure 6: Original B-scan previous to processing with the proposed NRAs.
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Figure 7: From top left to down right: processed with the decision based median filter, processed with the column-wise
standard median filter, processed with the Savitzky-Golay filter and processed with the peak and valley filter. A small region
of the B-scans is shown with a different colormap to bring out the differences.
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