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ABSTRACT

A method for the blind deconvolution of music recordings using
Higher Order Statistics (HOS) is presented. Music signals can be
modelled as sinusoids with noise. The noise part is assumed to
have a nonGaussian statistics with a nonzero skewness. I show that
when the 3rd-order statistics of a reverberated music signal is cal-
culated, the effect of the deterministics part is cancelled and only
noise convolved with the room impulse response (RIR) is observed.
Therefore, using system identification methods based on 3rd-order
statistics, RIR can be obtained and used to remove the reverberation.
Simulations performed with real RIR and music signals confirm the
method and validity of the ideas.

1. INTRODUCTION

A sound emitted from a source in a room passes through many dif-
ferent paths via the reflections, in addition to the direct path, creat-
ing the reverberation effect in the sound. This effect is modelled by
a very long FIR filter in the most basic case. Estimating the Room
Impulse Response (RIR) or its inverse and removing the reveber-
ation have great potentials in many different applications such as
dereverberation and restoration of old audio recordings.

In a real scenario, we do not have any explicit information about
the RIR (possibly other than the size of the room) or the anechoic
sound source. Only a recorded audio signal is available and tackling
this problem using only an audio recording is within the realm of
Blind Deconvolution (BD). The problem of BD of audio signals
has not been considered other than by a few works, [5], [7], [18],
where the source is speech.

We present a novel blind estimation method of the magnitude
response of a RIR from music recordings with Higher Order Statis-
tics (HOS). The problem setup is as follows. A music signal, s(t),
passes through the RIR, h(t), and this is represented by the linear
convolution

x(t) =
L∑

i=0

h(i)s(t − i) (1)

where x(t) is the recorded sound and the RIR is assumed to be sta-
tionary, the letter t is used here to denote discrete time instants, i.e.
t ∈ { n

fs
|n ∈ Z } with fs being the sampling frequency and Z being

the set of integers. In the frequency domain, h(t) is represented by

H(k) =
∑L

t=0 h(t)e− j2πt k
2L+1 . The aim is to estimate |H(k)| using

only x(t). There are two unknowns, the source signal and the RIR,
while there is only one signal to use which is the recorded sound, as
in a typical BD problem. Therefore, some other information must
be brought in by other means. We will show that the additional
information is gained through statistics of the source.

In the BD methods which were originally developed in the com-
munications and the geophysics literature [2], [6], the assumption
that the source signal has independent and identically distributed
(i.i.d) samples like a noise is the defining element that leads one to
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the solution. These methods, however, cannot be applied to audio
signals directly because audio signals have strong correlations. But,
investigation of the models used in the representation of audio sig-
nals lead to some approaches making use of the basic ideas in these
conventional methods. For the dereveberation of speech signals, for
instance, the speech signal is whitened by using the all-pole model
and then a BD algorithm like given in [6] is applied to the whitened
signal [5]. Music signals have long-term correlations and a very
high-order filter would be needed to model a music signal as an
all-pole filter excited by noise. Therefore, such an approach is not
suitable to music signals.

We will present a method derived from one of the most
widely used models in music signal processing which is the sinu-
soids+noise model [16] written below

s(t) =
R∑

r=1

Arcos(wrt +φr(t))+n(t). (2)

The sinusoidal part is taken as deterministic while the noise part rep-
resent the stochastic part of the signal. The amplitudes and the fre-
quencies of the sinusoidal (harmonic) components are considered
as short-time deterministic constants. The method employed for the
magnitude response estimation of a RIR is based on the 3rd-order
statistics of the noise part in this model with some assumptions.

In the next section, this music model is explained and its (cumu-
lants) statistics will be derived. In section 3, a magnitude response
estimation algorithm will be given based on the observations from
section 2. The detailed explanation of the methods for the realiza-
tion of the proposed algorithm is presented in section 4, simulation
results will be provided in section 5.

2. MUSIC SIGNAL MODEL AND THE HOS OF MUSIC
SIGNALS

A BD problem requires more information in addition to the ob-
served signal and, most of the time, it is obtained via some statistics
of the source signal. In this case, the source is music signal which
has a general model given by (2) and I will try to make use of the
HOS hidden in the signal with cumulants employed as the tools of
statistics .

In the music signal model (2), the amplitudes and the frequen-
cies of the sinusoidal (harmonic) components are considered as
short-time deterministic constants. Because it is assumed that the
frequencies are almost constant, the initial phase values φr(t) can
be taken as constants even though small fluctuations can occur, i.e.
φr(t) ≈ φr(0), ∀t ∈ Z . On the other hand, φr(t) is not the same for
different values of r = 1, · · · ,R, i.e. the individual cosines are not in
phase [11] Hence, the phases of the different harmonic components
are assumed to be i.i.d random variables along different frequencies
and constant in time. Furthermore, the noise signal n(t) is assumed
to be white with a nonGaussian distribution, which will play an
important role in the development of our ideas as will be become
evident in the next section.

The conventional signal processing is based on second-order
statistics. It is a straightforward task to estimate a linear system
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given the input and output signals under certain conditions. In a
blind scenario, however, using statistics of order higher than 2 is
more suitable to extract some information or to do estimation. To
represent the HOS of a random process, mostly cumulants are used.
They lead to easy mathematical formulation and cumulants of order
≥ 3 preserve the phase. The multidimensional Fourier transform of
cumulants are called the polyspectra and the first three polyspectra
are the power spectrum, the bispectrum and the trispectrum. The
reader is referred to [12] for a tutorial on this subject. One can do
the processing either using the cumulant sequence or polyspectra
depending on the nature of the problem. The polyspectra of two
convolved signals turn out to be the multiplication of the polyspec-
tra of the signals and this leads to easy observations and mathemat-
ical derivations. A method developed using the cumulants means
that a parametric model will be employed. Parametric estimation
methods require a priori knownledge on the model type and order
which creates the major difficulty for a RIR. It is not possible to
model a RIR by a MA or ARMA model with a precisely known or-
der(s). Because of this, parametric methods are not suitable in this
problem. Frequency domain methods, on the other hand, can toler-
ate order mismatches and allow us to focus on the magnitude and
the phase estimation problems separately. Because of these, I will
employ polyspectra in the algorithm that will be developed.

Given the model for the music, its cumulants will be derived
and the algorithm development will be carried out through the
polyspectra. The crucial points are the existence of the noise part
and the assumption that it is white and has a nonGaussian probabil-
ity density function (pdf).

2.1 Cumulants of Music Signal

The polyspectra of two convolved signals is equal to the multi-
plication of their polyspectra [12]. I start to develop our ideas
from this point. Mathematically, I have Pk,x(w1, · · · ,wk−1) =
DFTk−1{ck,x(τ1, · · · ,τk−1)} for the kth-order polyspectra where
ck,x(τ1, · · · ,τk−1) is the corresponding cumulant sequence (DFTk−1
denotes the discrete Fourier transform of dimension k−1).

I only have access to x(t) and its polyspectra equals to the
multiplication of those of s(t) and h(t) The noise n(t) and the
deterministic parts d(t) are independent, therefore, from x(t) =
h(t)∗d(t)+h(t)∗n(t) I obtain

Pk,x(w1, · · · ,wk−1) = Pk,d(w1, · · · ,wk−1)Pk,h(w1, · · · ,wk−1)

+Pk,n(w1, · · · ,wk−1)Pk,h(w1, · · · ,wk−1) (3)

I assumed that the noise part is white which implies
Pk,n(w1, · · · ,wk−1) = γk resulting in

Pk,x(w1, · · · ,wk−1) = Pk,d(w1, · · · ,wk−1)Pk,h(w1, · · · ,wk−1)

+γkPk,h(w1, · · · ,wk−1) (4)

where γk is the scaling constant. Since we do not have direct access
to d(t), we cannot obtain Pk,d(w1, · · · ,wk−1) from x(t). But, we
can find the order k such that Pk,d(w1, · · · ,wk−1) is zero and this
will result in Pk,x(w1, · · · ,wk−1) = γkPk,h(w1, · · · ,wk−1). This way,
we will be able to exploit the noise part and eliminate the effect
of the sinusoidal part in music signals; the effective signal will be
equal to the noise convolved with the RIR and the problem will be
in a similar form studied in the conventional BD methods. Hence,
h(t) can be estimated from Pk,x(w1, · · · ,wk−1) since it will indeed
correspond to the polyspectra of the h(t).

After this preliminary discussion, I now concentrate on the cu-
mulants of a music signal and explain that 3 as the cumulant order
should be chosen so that I can get rid of the sinusoidal part.

The deterministic part is a sum of sinusoids with different
phases which are assumed to be uniformly distributed in the inter-
val [0,2π). In the 2nd- and 4th-order statistics, the deterministic
part appears as sinusoids [17], [1]. For the order k = 3, the cumu-
lants of d(t) becomes zero. In order to see this, let us calculate the
3rd-order cumulant of s(t)

The 3rd-order cumulant of s(t) =
∑R

r=1 Arcos(wrt + φr(t)) +
n(t), c3,s(τ1,τ2) = Eφr ,n{s(t)s(t + τ1)s(t + τ2)}1, by the assump-
tion that φr(t) is a random variable through r and constant along t,
becomes

c3,s(τ1,τ2) =
A3

r

4
Eφr

{( R∑
r=1

cos(wr(t − τ1 + τ2)−φr(t))

+ cos(wr(t + τ1 + τ2)−φr(t))
+ cos(wr(t + τ1 − τ2)+φr(t))

+ cos(wr(3k + τ1 + τ2)+3φr(t))
)}

+ δ(τ1,τ2)γ3,n (5)

where the phases are zero mean random variables in the cosine
terms. The expectation operation cancels them out because each
phase φr has zero mean, hence,

c3,s(τ1,τ2) = δ(τ1,τ2)γ3,n. (6)

From this result, we have P3,s(w1,w2) = DFT2
{

γ3,nδ(τ1,τ2)
}

=
γ3,n and using this fact, (4) gets the following form

P3,x(w1,w2) = γ3,nH(w1)H(w2)H∗(w1 +w2) (7)

where P3,h(w1,w2) is replaced by H(w1)H(w2)H∗(w1 + w2). The
3rd-order polyspectra is called the bispectrum and the letter B is
used to denote it [13]. I adopt this convention from this point on
and Bx(w1,w2) is used instead of P3,x(w1,w2) and (7) is rewritten
as

Bx(w1,w2) = γ3,nH(w1)H(w2)H∗(w1 +w2). (8)

The expression (8) implies that if the assumption on the phase
of the different harmonics in a music signal hold then one can use
the 3rd-order cumulants to obtain the information regarding the RIR
from the cumulants of the remaining noise part in the signal. Given
the estimated polyspectra of a FIR filter, there are different algo-
rithms to estimate the filter [9], [10], [14], [15]. I only present a
method for the magnitude estimation |H(k)|. The phase algorithms
given for nonparametric methods result in very inaccurate estimates
for the phase becasue of ambiguities. My investigation of the phase
estimation methods in [9], [15] showed that the level of inaccuracy
becomes bigger for long impulse responses rendering the estimates
useless.

Starting from (8), I next present the algorithm for the magnitude
estimation.

3. BLIND MAGNITUDE RESPONSE ESTIMATION OF A
RIR USING 3RD-ORDER STATISTICS FROM MUSIC

SIGNALS

What we conclude from the result given in (8) is that applying the
blind system identification techniques available for the 3rd-order
statistics on the observed reverberated music signal will provide an
estimate for the RIR. In real signals, however, the whiteness as-
sumption of the noise part will not hold perfectly. The noise would
rather have some structure in it. After calculating the 3rd-order cu-
mulant of the observed signal, one can do a whitening on this 3rd-
order statistics as in the 2nd-order statistics. The structure causing
the coloring is modeled as an AR filter as in conventional whitening

1I put φr and n as a subscript to the expectation to imply that the expec-
tation is with respect to both φr and n since they are the random variables
involved in this equation, but because they are independent the result will
simply be the expectation applied to each of them individually without any
regard to if they are added or multiplied
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applied on speech dereverberation [5], [8]. In doing this, it is as-
sumed that a short-order AR filter captures only the coloring struc-
ture in the noise without distorting the RIR. By this whitening pro-
cedure we expect that, when we apply the system identification al-
gorithm, the signal will be closer to the ideal form noise-convolved-
with-the-RIR.

The method for the AR model estimation using 3rd-order spec-
tra provided in the paper [4] will be used since it guarantees a unique
and stable solution in principle.

Involving the whitening, the procedure defined for the blind
magnitude response estimation of a RIR from the reverberated mu-
sic signal on a finite set of samples {x(t)}S

t=1 is given as below.

3.1 Magnitude Estimation Procedure

1. Estimate the AR model of order p from estimated the cumulant
sequence and apply 3rd-order whitening, x′(t).

2. Estimate the truncated cumulant sequence using the whitened
sequence, ĉ3,x′(τ1,τ2).

3. Calculate B̂x(w1,w2) = DFT2{ĉ3,x′(τ1,τ2),2N +1}.

4. Estimate |Ĥ(w)| from B̂x(w1,w2)
The whitened signal obtained from the original signal x(t) is de-
noted by x′(t) and the estimated quantities are given with a hat. The
detailed description of the algorithms employed to realize this ap-
proach along with some implementation remarks are given next.

4. ALGORITHMS AND IMPLEMENTATION ISSUES

The steps given in magnitude estmation procedure are given in de-
tail in this section. I also discuss some practical issues.

4.1 Estimation of the Cumulant Sequence

Divide data into K portions with equal samples such that each por-
tion has M samples of data, i.e. S = KM. The mean of each segment
is calculated and subtracted from each sample. I, then, obtain the
biased estimates2 of the cumulants for all segments using

ĉi
3,x(τ1,τ2) =

1
M

l2∑
k=l1

x(t)x(t + τ1)x(t + τ2) (9)

where i = 1, · · · ,K, l1 = max(0,−τ1,−τ2), l2 = min(M − 1,M −
1− τ1,M − 1− τ2), τ1 = −L, · · · ,L, τ2 = −L, · · · ,L, and average
the cumulant estimates obtained from all segments of the signal

ĉ3,x(τ1,τ2) =
1
K

K∑
i=1

ĉi
3,x(τ1,τ2). (10)

The value of L will be chosen according to where this cumulant
sequence estimation is used. Steps 1 and 2 require the estimation of
the cumulant sequence. For step 1, which is the whitening, L will
be around 30-50 and for step 2 it will be chosen as the truncated
RIR length which would be 2000 or 4000 depending on the room
considered.

4.2 3rd-Order Whitening

The whitening will be carried out by assuming that the structure in
the noise can be modelled by an all-pole (AR) filter. The reason
why the AR model is taken is that if we choose an ARMA model
it might remove the effect of the RIR as well. In addition, it is not
easy to solve for the MA part in an ARMA model. The noise part
n(t) modelled by an all-pole filter of order p is given by

n(t) = −
p∑

i=1

ain(t − i)+e(t) (11)

2Biased estimates are generally preferred over the unbiased estimates
since they have smaller variance.
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Figure 1: The 3rd-order cumulant sequence after whitening.

where e(t) is the assumed excitation signal. This noise signal is in
x(t) and we do not have access to it directly. Hence, the familiar
AR recursion formula for the 3rd-order cumulants of x(t) is written
as [4]

c3,x(τ1,τ2)+
p∑

i=1

aic3,x(τ1 − i,τ2) = 0, τ1 > 0. (12)

It has been proved in [4] that the set of equations obtained by fix-
ing τ1 at each one of the values τ1 = 1, · · · , p and varying τ2 as
τ2 = −p, · · · ,0 yield the vector a = [a1 · · · ap]T such that the cor-
responding all-pole filter is stable.

The solution a = −R−1c will be employed to represent a short
3rd-order modelling of the noise structure in the music signal for
the purpose of whitening, where R is a matrix obtained from the
cumulants of x as given in [4]. The cumulant values in R and c are
replaced by their estimated versions, ĉ3,x(τ1,τ2), calculated using
(9) and (10) in the implementation. The AR order, p, is determined
experimentally according to the music signal in consideration. In
the simulations I have undertaken, it was chosen around 30 to 50.
The inverse FIR filter a′ = [1 −aT ]T is applied on x(t) to obtain the
whitened signal, x′(t) =

∑p−1
i=0 a′ix(t − i).

A 3rd-order whitening was applied on the same signal obtained
from brass. The resulting cumulant sequence is plotted from two
different views in Figure 1. The order of the AR filter was 10. The
effect of the whitening is making the cumulant sequence closer to
Kronecker delta function. It removes the structure to some degree.

4.3 Estimation of the Truncated Cumulant Sequence For Step-
2

A RIR is very long. When the cumulant sequence is estimated, it
has to be assumed to be of certain length. If I consider a RIR sam-
pled at 16 kHz, one would need to take 5000 to 10000 samples de-
pending on the room. Figure 2 shows a RIR measured at a concert
hall at Queens University of Belfast. The sampling rate was 16 kHz.
As seen, only 3000 to 5000 samples have significantly high magni-
tude values. Therefore, the cumulant sequence can be truncated to a
maximum range around 3000 to 5000. This truncation is necessary
and the truncation length can only be chosen roughly by assuming a
prior knowledge on the type of the room, which is quite reasonable
since most of the case it is known where the recording took place.
The truncation length will be the assumed RIR length and denoted
by N. The number of music samples to be used in (9) must be cho-
sen in accordance with the truncation length. The sample number
used in each block must be as high as possible to alleviate the effects
of the transients in the convolution of music samples with the RIR.
In practice this is not very easy to choose because it is related to the
stationarity of the music signal. But, loosely speaking, the number
of music samples must be at least twice the truncation length. In
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the simulations, I chose 4 times the truncation length music sam-
ples. With these values chosen, the formulae given in (9) and (10)
are, then, used to estimate the cumulant sequence ĉ3,x′(τ1,τ2) for
τ1,τ2 ∈ {−N, · · · ,0, · · · ,N}.
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Figure 2: The impulse response of the Whittla Concert Hall sam-
pled at 16 kHz.

4.4 Calculation of the Bispectra

The bispectra B̂x′(w1,w2) are obtained simply by taking 2D-DFT
of the estimated cumulant sequence. If the truncation length is de-
noted by N then the FFT length must be 2N +1 due to the fact that
cumulant sequence indices will run from −N to N. Therefore, the
bispectra estimation with w1, w2 replaced by the discrete frequency
values k1 and k2, respectively, using the Matlab notation, follows
from

B̂x′(k1,k2) = FFT2
{

ĉ3,x′(τ1,τ2),2N +1
}

= γs,3H(k1)H(k2)H∗(k1 +k2) (13)

where k1,k2 ∈ {−N, · · · ,0, · · · ,N}, H(k) =
∑2N

t=0 h(t)e− j 2πkt
2N+1 .

4.4.1 Magnitude Response Estimation

I will use the spectrum magnitude estimation given in [3]. The spec-
trum magnitude estimation from bispectra formula is

ln
(∣∣γs,3

∣∣1/3 |H(k)|
)

=
−2

∑k−1
i=0 ln

(
|H(i)| ∣∣γs,3

∣∣1/3
)

+M(k)

(k +3)
, (14)

k = 1, · · · ,L

where M(k) =
∑k

i=0 ln |Bx(i,k− i)|, L corresponds to the angular
frequency π. The value of the zero frequency magnitude is

calculated from ln
(∣∣γs,3

∣∣1/3 |H(0)|
)

= 1
3 ln |B(0,0)|.

The magnitude spectrum is estimated up to a scale indeter-
minacy, as in all blind approaches. Practical implementations will
be carried out using a finite number of data samples {x(t)}N

t=1 and
Bx(k1,k2) are estimated from {x(t)}N

t=1.

5. SIMULATIONS

A 10 second long music signal from brass was taken and windowed
into 10000 samples (no overlapping) each of which was used in
the estimation of the 3rd-order cumulant sequence. The averaged
cumulant sequence is plotted in Figure 3.

The 2D-cumulant sequence is very close to a 2D Kronecker
delta function which is what we expect. The noise part of the mu-
sic signal seems fine in this occasion. But, each music instrument
has its own characteristic properties. Because of this, the statistical
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Figure 3: The 3rd-order cumulant sequence of a music signal ob-
tained from brass.

properties of the noise part will differ from instrument to instru-
ment. The whiteness assumption will not hold at all in some instru-
ments. For example, piano has very weak noise component which is
very far from being described as noise. In some other instruments,
the noise might be very obvious but have very small skewness which
will prevent us from using it with the 3rd-order statistics. Our simu-
lations showed that brass is not the only instrument having non-zero
skewness. Drum presents a noise having similar 3rd-order statistics.

5.1 Test-1

A recording of brass sampled at 16 kHz was used as the input to the
512-sample long RIR impulse reponse which was taken from the
concert hall impulse response measurement. A 3rd-order whitening
was applied prior to the magnitude estimation procedure. The order
of the all-pole filter used in whitening was chosen to be 50. The
estimated magnitude response is shown in Figure 4 with the true
one. The estimated magnitude response shown by black color is
very close to the true one which is the red colored plot.
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Figure 4: Estimated magnitude response with algorithm-2.

5.2 Test-2

In Figure 5, the magnitude estimate for the 1024-sample portion of
the concert hall impulse response is shown with the true one. The
input signal was a drum recording and the whitening filter was of
order 50. In this simulation, in order to see the affect of truncation,
I actually used the first 2048 samples of the impulse response of
the concert hall at Queens University of Belfast in creating the data
x(t). But, the magnitude estimation was carried out for 1024 sam-
ples. Other than a few spiky estimates, in general, the estimation
method is able to extract the magnitude response to some degree.
This means that the the magnitude response is not affected much by
truncation and the magnitude estimation algorithm is quite robust
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against such imperfections. Again red plot shows the true magni-
tude response and black colored plot is the estimated one.
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Figure 5: Estimated magnitude response with algorithm-2.

6. CONCLUSIONS

A novel method using 3rd-order statistics of the music signal was
outlined for the blind estimation of the magnitude response of a
RIR from music recordings. Blind dereverberation of music signals
has a lot of potential in film making and restoration of old record-
ings. The method I provided for the magnitude response estimation
seems promising and this is a step further towards obtaining blind
dereverberation of audio recordings.

The next step is work on the phase estimation problem. The
main difficulty in estimating the phase comes from the fact that
phase estimation algorithms using HOS are prone to generate er-
roneous results due to the ambiguity in the phase values used in
the estimation process. However, using some subband processing,
improvements can be obtained.
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