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ABSTRACT

The paper proposes an algorithm for signal recovery with
side information. It is assumed that the decoder has a priori
knowledge about the sparse source signal in the form of side
information, that can be used to estimate positions of signifi-
cant elements in the source. The proposed iterative algorithm
extends the orthogonal matching pursuit (OMP) algorithm
used in compressive sampling, and is robust to partially noisy
side information. Thus it is suitable for scenarios whereby a
correlated source is available at the decoder. We apply the al-
gorithm to spectrum sensing and image acquisition, and show
great advantages of the proposed solution, compared to OMP
(no side information) in terms of improved performance and
reduced execution time.

1. INTRODUCTION

Compressive sampling is a technique for data acquisition and
estimation that aims to sample signals sparsely in transform
domains. The process of compressive sampling replaces con-
ventional sampling and reconstruction with a more general
linear measurement scheme and an optimization procedure to
acquire a subset of signals within a source at a rate that is be-
low Nyquist. However, this will work only if the source is
sparse in the transform domain of choice.

A number of theoretical contributions have appeared on
compressive sampling (see [1, 2, 3, 4]) over the past few
years. One of the main challenges is the design of efficient
and fast signal recovery algorithms, that are able to recon-
struct an N-dimensional signal using M < N measurements
by exploiting sparsity of the signal. Since optimal recovery is
an NP-hard problem, several sub-optimal solutions have been
reported (see [4, 5, 6] and references therein). One of them is
the orthogonal matching pursuit (OMP) algorithm [7], which
is very popular due to its relatively lower complexity com-
pared to other proposed reconstruction methods (see [1, 2]).
However, the execution time of OMP is still too high for many
practical applications where sparsity of the signal and its di-
mensions are high. One such example is image/video acquisi-
tion [8], where frame sizes are usually too large for the OMP
recovery. To rectify this problem, in our previous work [9],
we suggested splitting each frame into small non-overlapping
blocks and performing sampling and the OMP recovery on
only sparse blocks. However, the method of [9] reconstructs
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each block in the frame without exploiting useful information
about previously reconstructed blocks.

Inspired by compressive image/video sampling [8, 9], in
this paper, we propose a novel algorithm for signal recovery
with side information. The algorithm extends OMP to the
case when a priori information about the source is present
at the decoder in the form of estimated positions of signif-
icant elements of the signal. If the side information is cor-
rect, the algorithm finds the solution with fewer iterations than
OMP. In addition, the reconstruction quality is generally bet-
ter, which indicates that fewer measurements are needed. If
the side information is noisy, i.e., some of the assumed po-
sitions at the decoder are not correct, the proposed algorithm
has a mechanism to correct them and converge to the correct
solution.

We test the algorithm in two practical application sce-
narios. The first application is spectrum sensing by cogni-
tive radios, which sense the spectrum environment to exploit
spectrum holes [10] and send their measurements to a central
point. Since the spectrum is expected to be sparse, compres-
sive sampling can be exploited to reduce the number of mea-
surements. We assume that the measurements are corrupted
by independent Additive White Gaussian Noise (AWGN).
Since acquired samples by different radios in a localized area
are correlated, a central point recovers the reading of a cogni-
tive radio, using the results from other neighboring radios as
side information.

The second application that we consider is image/video
acquisition, where a previously recovered video frame serves
as side information for recovery of successive frames.

In [11], an algorithm for signal recovery from noisy obser-
vations is proposed. In [12], joint sparsity between measure-
ments of different sensors was discussed and several mod-
els proposed. In [13], a greedy pursuit method, simultane-
ous OMP, was proposed for simultaneous recovery of several
correlated sparse signals. In parallel work [14, 15] a similar
problem as in this paper is studied but not in the context of
OMP.

In this paper, we assume that knowledge about the signal
is present already at the decoder, either as a previously recov-
ered correlated signal, or information sent a priori. For ex-
ample, when recovering a frame, previous frames are already
available. Thus, we do not address joint sparsity directly;
however, our result does indicate that with side information,



the number of measurements needed is reduced. The setup
considered in this paper can be seen as the asymmetric ver-
sion of the scenarios of [12, 13]. We also develop an effective
technique to cope with “corrupted” side information, i.e., the
case when some of the estimated significant positions at the
decoder are wrong. We apply the algorithm to cognitive ra-
dio spectrum sensing and compressive image sampling show-
ing improved performance with faster recovery compared to
OMP and the method of [9].

The paper is organized as follows. The next section briefly
reviews compressive sampling and the OMP reconstruction
algorithm. Section 3 describes the algorithm for signal recov-
ery with side information. Section 4 shows our experimental
results, and the last section concludes the paper and outlines
future work.

2. BACKGROUND

In this section we briefly describe compressive sampling and
signal recovery via the OMP algorithm [7]. We also set the
notation used throughout the paper.

2.1. Compressive Sampling

Compressive sampling or compressed sensing [1, 2] is a novel
framework that enables sampling below the Nyquist rate,
without (or with a small) sacrifice in reconstruction quality.
It is based on exploiting sparsity of the signal in some do-
main. In this section we briefly review compressive sampling
following closely notation of [3]. Matrices will be denoted by
bold capital letters, vectors by bold low-case letters, and sets
by capital letters.

Let x be a set of N samples of a real-valued, discrete-time
random process X. Let

N
x=Ws= Zsil//i, €))]
i=1

1

where s = [s1,...,sy] is an N-vector of weighted coefficients
si=(x,y;), and ¥ = [y1|ya |- |wy] is an N x N orthonormal
basis matrix with y; being the i-th basis column vector.

Vector x is considered K-sparse in the domain ¥, for
K < N, if only K out of N elements of s are non-zero. Many
natural signals can be approximated as sparse since they have
many non-significant (close to zero) coefficients after trans-
form. Sparsity of a signal is used for compression with con-
ventional transform coding, where the whole signal is first
acquired (all N samples), then the N transform coefficients s
are obtained via s = ¥~ 'x, and finally N — K non-significant
coefficients of s are discarded and the remaining are encoded.
The resulting acquisition redundancy is due to large amounts
of data being discarded because they carry negligible or no
energy.

The main idea of compressive sampling is to remove this
“sampling redundancy” by requiring only M samples of the
signal, where K < M < N. Let y be an M-length measure-
ment vector given by: y = ®x, where ® is an M x N measure-
ment matrix. The above expression can be written in terms of
s as

y=®Ps=P's. 2)
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Matrix ¥ determines the domain in which the signal is sparse.
For example, if s;’s are discrete cosine coefficients, then we
collect samples in the DCT domain assuming that the image
will be sparse in this domain. On the other hand, if s;’s are
sinusoids at different frequencies, we collect Fourier coeffi-
cients.

Note that (2) is a dimensionality reduction thus leading to
a loss in information in general. That is, there are infinitely
many x’ that when multiplied by ® give y. However, it has
been shown in [1, 2] that signal x can be recovered losslessly
from M ~ K or slightly more measurements if the measure-
ment matrix ® is properly designed, so that ®W satisfies the
so-called restricted isometry property (RIP) [2]. This will al-
ways be true if ® and W are incoherent, that is, the vectors of
® cannot sparsely represent basis vectors and vice versa.

It was further shown [1, 2, 3] that an independent identi-
cally distributed (i.i.d.) zero-mean Gaussian matrix satisfies
the above property for any orthonormal ¥ with high proba-
bility. Some other choices of ¥ that satisfy RIP are random
matrices with +1/-1 entries drawn from uniform Bernoulli dis-
tribution, randomly permuted vectors from standard ortho-
normal bases, such as Fourier and Walsh-Hadamard. Also,
it has been shown that it is enough for a signal x to be r-
compressible (the sorted coefficients decay under a power law
with scaling exponent —r), instead of K sparse (see [4]).

Unfortunately, reconstruction of x (or equivalently, s)
from vector y of M samples is not trivial. The exact solu-
tion [1, 2, 3] is NP hard and consists of finding the minimum
lp norm (the number of non-zero elements). However, an ex-
cellent approximation can be obtained via the /; norm mini-
mization given by:

8 =argmin||s’||;, suchthat ®Ws =y. 3)

It has been shown in [I, 2] that a K-sparse signal
can be recovered with high probability using (3) if M >
cKlog(N/K) for some small constant c. Thus, one can re-
cover N measurements of x with high probability from only
M = cKlog(N/K) < N random measurements y under the
assumption that x is K-sparse in domain W.

This convex optimization problem, namely, basis pursuit
[1, 2], can be solved using a linear program algorithm of
O(N?) complexity. Due to complexity and low speed of lin-
ear programming algorithms, faster solutions were proposed
at the expense of slightly more measurements, such as match-
ing pursuit, tree matching pursuit [5], orthogonal matching
pursuit [7], and group testing [6].

If noise is present in the collected measurements, then (3)
should be replaced by minimization of

§ = argmin||s’||;, subjectto |[®¥s' —y|,<e, (4)

where € is estimated upper bound on the noise magnitude [3].
Several recovery algorithms have been proposed that are able
to cope with measurement noise, such as [11, 17].

2.2. Orthogonal Matching Pursuit (OMP)

The OMP algorithm [7] is a greedy algorithm that can reli-
ably recover a K-sparse signal given O(KInN) random linear
measurements. The main idea of the algorithm is to select



columns of the measurement matrix ¢ that contribute in gen-
erating measurements y in a greedy way. That is, due to spar-
sity of the signal, only some of the columns in ® (exactly
K) will be used when calculating y. These K columns cor-
respond to the positions of significant elements in the sparse
signal. All other, N — K columns will not contribute in calcu-
lating y. OMP iteratively finds K columns of ®, by choosing
in each iteration the column that is most strongly correlated
with the residual, the part of the sparse signal that has not
yet been approximated. In the initialization step, the set of
contributing columns of ® is empty and residual is set to y.

It was shown in [7] that M > ¢Klog(N /&) measurements
are enough for recovery of the signal with probability exceed-
ing 1 — 0 with § € (0,0.36), ¢ <20 (¢ ~ 4 for Gaussian mea-
surement matrix).

The key problem of OMP is that it is time-consuming
when carried out over a large number of samples. For ex-
ample, experimental results in [7] show that for 1000 trails,
K =64, M =250, and N = 256, the processor time needed
for execution was roughly 50 sec, while for the same K and
M = 400 and N = 1024, the time increased to 200 sec. This
paper attempts to improve the reconstruction quality and to
decrease the execution time by exploiting a priori knowledge
about the signal in the form of decoder side information.

3. PROPOSED ALGORITHM

Suppose that ® is the M x N random measurement matrix.
To simplify exposition, let x be the N-length K-sparse signal
sparse in the time domain. (Otherwise, it is enough in the
following to replace x by s and ® by ®’.) The decoder has
access to the M-length measurement vector y = ®x. In ad-
dition, the decoder has a priori knowledge about the signal,
side information, in the form of estimated positions (which
might not be correct) of the significant elements in x . The
problem is to obtain the reconstructed signal, X, based on y,
&, and side information.

The main idea of the algorithm is to start with the esti-
mated positions of significant elements of x, and then in each
iteration find the most strongly correlated column in ® among
remaining ones. This column will either be included as an
additional column or it will replace the column in the set of
estimated positions that is least correlated (wrong guess). The
rationale is that the result for a correlated source will be close
the desired solution.

First a word about notation. For a set ®, |@| is its cardinal-
ity, and {} denotes an empty set. For a matrix £2, ®; denotes
its j-th column; furthermore, g is a matrix of |®| columns
of 2 with indices from set ®.

Algorithm 1 Signal recovery with side information

INPUT:

An M x N measurement matrix ®

An M-dimensional measurement vector y

The sparsity level of the signal K

Maximum number of iterations T > K

The side information set A1 with at the most K elements
Constants x|,k < 1.

OUTPUT:
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o An N-dimensional estimate X of the signal x
o Aset Ay, t > 1, containing K elements from {1,... N}
PROCEDURE:
1. Initialization:
o Sett=1.
o IfA; ={} then
- A, = {argmax;—1_n|(y.9;)[}
2. Get weakest element from side information set:
[ ] Qt = q’At
e X, = argming ||y — x|
e Let p be the projected value, and m the least corre-
lated column in 2, to'y.

3. Get strongest candidate from ‘outside’ set:
e r=y—dx,
* g =max;—1.n|[(r,9;)|
o /= argmaszl,,N\<r,¢j)|
4. Test whether to remove ‘wrong guess’ or to exit:
o If (p < qxy) then
- A[ - Al/{f;l}
o else
- if (pkay < q) then
* Ayl =Ny
* goto 6
5. Add strongest candidate:
o Ayt :AzU{l}
o If|Ar11| > K then

- = ‘I)AHI
- x; = argminy ||y — Q,x||»
- goto 6

o [ft <T then
— increment t
— goto 2

6. Stop: The estimate X has nonzero indices at the com-
ponents listed in Ary1. The value of X in component A;
equals the j-th component of x;.

Algorithm 1 allows the possibility for a wrong guess, that
is, the estimated position(s) of the significant elements in x
are wrong. That is why, the number of iterations 7 is allowed
to be higher than K. In the case when the probability of a
wrong guess is zero, T = K.

A is the set of known/estimated positions of the signifi-
cant elements of x at the decoder. If A; = {}, the algorithm
boils down to the OMP algorithm, thus in Step 1, as in OMP,
A is set to the most strongly correlated column in @ to y.

In Step 2, €2, is a matrix of columns of ® that correspond
to significant elements of x based on side information. The
decoder forms a projection, x;, of y onto €2;. Then, the de-
coder calculates the column in €2, that is least correlated to y.
This will be a candidate for removal since it might be a wrong
guess.

In Step 3, aresidual is computed based on the current esti-
mate x;, and as in OMP, the most strongly correlated column
in @ from the remaining columns is computed and its index
is set to [.



If column [ is more correlated than column i, 7 is re-
moved in the first step of Step 4. That is, 72 is characterized as
a wrong guess, since there are still unchecked columns out-
side the side information set that are more correlated. If col-
umn / is much less correlated than column 7 (regulated by
constant k), the decoder concludes that there cannot be fur-
ther improvement of the estimate, and exits.

If this is not the case, in Step 5, the decoder adds column
I to €, increments ¢ and goes to the next iteration. If there
are already K columns in set A;, the decoder exits, and makes
reconstruction based on the selected K columns.

Introduction of the margin (regulated by k) in Step 4 is
in spirt of (4). That is, a column is removed from the side
information set only if the newly found column is more cor-
related for a certain margin. On the other hand, if the newly
found column is much less correlated than the least correlated
column in the side information set, a conclusion is made that
the estimate cannot be further improved by introducing new
columns. The best values for k7 and x; are found by simula-
tions. Note that these deletions of coefficients are similar to
CoSaMP [11].

If all initial guesses are correct, the algorithm boils down
to OMP with K — |Ay] iterations, hence, reduced complexity
and execution time. In more realistic situations when side
information is not perfect, e.g., reconstruction of correlated
sources, the algorithm effectively corrects wrong guesses, as
it will be shown in the next section.

If € is the probability of a wrong guess, that is, the esti-
mated position of the significant element is wrong, then the al-
gorithm would roughly need €K iterations. Note that to allow
for correction of wrong guesses, one iteration of the algorithm
requires more computations than that of OMP. However, the
algorithm has the ability of using side information to improve
recovery. The algorithm is applicable to any measurement
matrix as OMP.

With small modifications the algorithm can be applied to
Approximate Conjugate Gradient Pursuit [16] and probably
some other greedy signal recovery algorithms.

4. APPLICATION EXAMPLES

In this section we apply Algorithm 1 to different application
scenarios. In all our simulations, we set k; = 0.25 and ¥, =
0.0001, which empirically led to the best results.

First, we test performance of the algorithm in the case of
perfect side information, € = 0, that is, all estimated positions
of significant elements at the decoder are correct. Signal x
of length N = 1000 contains K = 25 non-zero elements ran-
domly distributed. We use Gaussian measurement matrix ®,
and as performance indicator Mean Square Error (MSE) be-
tween the original signal and the reconstructed signal.

Fig. 1 shows MSE and the number of iterations vs the
number of positions of significant elements of x, termed
available side information, known at the decoder for three
different values of the number of measurements M. It can
be seen from the figure, that exploiting side information can
lead to a better reconstruction. Indeed, without side infor-
mation M = 100 measurements are not enough, while with
side information even with M = 50 and more than 20 known
elements, excellent recovery can be achieved. The number
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MSE

o kP w s 0 o N @ o

of iterations drops from 25 (without side information) to less
than 15 if more than 15 positions of significant elements are
known. As expected, the more positions of significant ele-
ments are known, the better the quality achieved with fewer
iterations.

Number or Iterations

of

5 . 10 . 15 ) 20 5 ; 10 . 15 ) 20 25
Available Side Information Available Side Information

(a) (b)
Fig. 1. Results with perfect knowledge of side information:(a)
MSE, (b) the number or iterations, vs. the number of known
positions of significant elements, i.e., available side informa-
tion.

Next, we test the algorithm for the spectrum sensing with
cognitive radio (CR) application. Let x(¢) be the signal that
occupies our chosen frequency band. Then, CRi, i = 1,2 re-
ceives: x;(t) = x(t) +n;(r), where n;(t) is zero-mean AWGN
independent of x(¢) and n;(r), j # i [10]. Let x, and x,, be
vectors of N equidistant samples of x(¢) and x;(¢), respec-
tively, sampled at or above the Nyquist sampling rate. CRi
samples x;, in M points, K <M < N, as:

Yi= @Xsi = @‘I’X‘Ym

where ® is an M x N measurement matrix, W is the inverse
Fourier transform, and X, the Fourier representation of x,,,
has only K < N non-zero elements when noise-free. Note
that, x;(¢) is down-sampled (non-uniformly) by setting mea-
surement matrix ® to contain all zeros and only one 1 in each
of M rows, where the position of 1 is random in that row.
Thus, y; contains M random (not equidistant) samples of x;(z).
y1 and y; can be seen as two noisy replicas of the same source,
hence they are correlated. The decoder recovers first X, from
¥1, and uses (some) positions of significant elements in X;, to
recover X, with the proposed algorithm.

We set N = 1000, sparsity to K = 30, the signal power
to 100 and change noise power P, = P,, to obtain differ-
ent signal-to-noise ratios (SNRs) in the channels. Fig. 2
shows normalized MSE between the original spectrum and
Fourier transform of the reconstructed, given by MSE =
I/NZ’}':1 E[(X,(j) — X, (j))?], and the number of needed
iterations vs the number of positions of significant elements
that the decoder uses from X, for four different values of
channel’s SNRs.

It can be seen that for all SNRs in the channel the recon-
struction quality improves with fewer number of iterations as
more positions of significant elements are used from the other
radio. If we do not use any information available from the
other radio, 30 iterations are needed whereas if we use all
available information, we need only few iterations in average.
SNR=Inf refers to the case of no noise in the channel.
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Fig. 2. CR example: (a) MSE, (b) the number or iterations,

vs. the number of positions of significant elements used from

the other radio, i.e., available side information.

Finally, we show results for the video acquisition sce-
nario. We simulated compressive sampling on the Y-
component of the QCIF “Akiyo” sequence. We split each
frame into 32 x 32 non-overlapping blocks and perform com-
pressive sampling in the DCT domain on each block. We use
an M x N measurement matrix with random Bernoulli +1/-1
entries, which is more realistic in this scenario [8]. The first
frame was compressively sampled and recovered using OMP
(without side information). It is then used as side information
for recovery of the second frame.

The results as peak signal-to-noise ratio (PSNR) of the
average MSE and the average number of iterations (over all
blocks) vs. the percentage of acquired samples are shown
in Fig. 3. Side information curves denote results obtained
with independent recovery of the frame with OMP. It can be
seen that for the same PSNR performance, significantly fewer
iterations are needed for all sampling rates. Similar results
were obtained for other frames in the “Akiyo” sequence.
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Fig. 3. Video acquisition: (a) PSNR, (b) the average number
of iterations, vs. sampling rate.
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5. CONCLUSION

We develop an algorithm for signal recovery with side infor-
mation. It is an iterative algorithm based on OMP, that takes
into account side information, i.e., estimated positions of sig-
nificant elements of the signal, that can be acquired from the
already recovered correlated source. Our experiments show
great advantages of the proposed solution, compared to OMP
(without side information) in terms of improved performance
and reduced complexity. We apply the algorithm to cogni-
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tive radio spectrum sensing and compressive image sampling
showing improved performance with faster recovery.
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