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ABSTRACT our analysis shows that information feedback can result in a con-
stant factor power reduction, the size of which is dependent on fi-
nal MSE requirement as well as the power spectral density of the
%ource. For the problem of estimating an unknown parameter, it is
Shown that the power reduction factor grows unbounded as the final
SE requirement tends to zero.

Our work is inspired by the information theoretic study [2] of
receiver feedback for a memoryless point-to-point communication
channel. In that context, even though information feedback cannot
Mhcrease channel capacity, it can significantly reduce the probability
gr error at the receiver [2]. Our current work can be viewed

s exploiting information feedback in the context of distributed
signal processing with multiple sensors, as opposed to the single
point-to-point communication considered by [2].

We study the role of information feedback for the problem of dis-
tributed signal tracking/estimation using a sensor network with
fusion center. Assuming that the fusion center has sufficient e
ergy to reliably feed back its intermediate estimates, we show th
the sensors can substantially reduce their power consumption by
using the feedback information in a manner similar to the stocha
tic approximation scheme of Robbins-Monro. For the problem o
tracking an autoregressive source or estimating an unknown paral
eter, we quantify the total achievable power saving (as compared
the distributed schemes with no feedback), and provide numeric
simulations to confirm the theoretical analysis.

1. PROBLEM FORMULATION
A. Source model

Consider the problem of tracking a signal source or estimating an

unknown parameter by a wireless sensor network with a fusion cens

ter (FC). Given that the energy supply to each sensor is limited, it is

important that sensor operations are energy-efficient so as to ensure p

a maximum network lifetime. In practice, a major part of sensor sn] = — Z akjsin— k] +u[n], u[n] ~ .4(0, 03), (1)

energy is used for communication with the FC. As a result, some K=1

recent work has focussed on reducing power consumption either by

optimally adjusting quantization and transmission power levels ai he source is initialized witls[n] = 0 for n < 0. The model coeffi-

each sensor in an inhomogeneous sensing environment [3], or jentsalk], k=1,..., pas well as the model ordgrare assumed to

exploiting the spatial correlation in sensor observations [4]. In bottbe known. The AR model can also be expressed in a vector form

studies, communication between the sensors and the FC is assumed

to be one-way, and no information feedback from the FC is allowed. s[n] = As[n— 1] + bu[n], ()

In some practical situations, the FC (e.g., an unmanned aerial vehi- D )

cle) may have substantially more energy supply than the sensor&here the vector source stade| < RP is defined by

and therefore can feed back information to the sensors reliably if

needed. An interesting question is: what benefits can information sn—p+1

feedback bring to a sensor network system? §nj = :
From a signal processing standpoint, allowing information

feedback cannot increase the estimation performance of a sensor

network. This is because the information provided by the FC ca . « «1 .

only be a suitable summary of the information collected by the senr‘}jlnd matrixA € RP*P and vectob € RP*" are defined by

onsider ap-th order autoregressive (AR) source modeled as

s[:n]

sors; there cannot be any “fresh information” from the FC. Thus, 010 0.0 0

even with feedback, the sensor network performance is still upper 001 0.0 0

bounded by that of a centralized counterpart which is further lim-

ited by the same Cramer-Rao bound as in the case without feedback. A= : - , b= . (3)
However, from a power consumption point of view, allowing infor- 00 O0...01 0

mation feedback does bring a major benefit. As we show in this —alp] ... —all 1

paper, by suitably exploiting feedback information from the FC, a

sensor network can significantly reduce its power consumption reB. Sensor observation model

quired to achieve a given mean squared error (MSE) performance.

Thus, in some sense, information feedback effectively lets the FC  Suppose sourcgln] is observed by a sensor network wih
tradeoff its own power with that of the sensors as both sides collabsensors. The source observations are corrupted by i.i.d. (spatially
orate to achieve a given signal processing performance. The centgnd temporally) Gaussian noise

piece of our proposed scheme is a low-power communication strat-

egy based on the stochastic approximation procedure of Robbins- xi[n] = s[n]+wi[n], wi[n] ~.#(0, Uv%% i=1,....K.

Monro. For the problem of tracking an autoregressive (AR) source,

An equivalent vector model is

This work is supported by the USDOD ARMY, grant number W911NF-
05-1-0567. x[n=hTs[n+wln, h=1[0,....,0YT, i=1...K (4)
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We assume that, at each timgthei-th sensor transmits an analog e With the coherent combining (6) channel, the FC has
messagsf (xj[n]) of the observed signa4[n] to the FC. No local
interaction among sensors is considered in this paper. 0

i yFS[n + uln]

C. Communication channel to the fusion center

Different designs of MAC layer are possible in practical im- le.[n N Z
plementation of sensor networks. We consider two specific MAC
strategies: i) uncoded orthogonal transmissions and ii) uncoded = §n+ wi[n +7 Zn],
coherent combining. The former can be implemented using zi
CDMA/TDMA/FDMA schemes, while the latter can be realized in
systems with synchronized transmission over static channels. which also can be expressed as (8) with Gaussian noise

e Uncoded orthogonal transmissionsthe FC receives separate
signals from all transmitting sensors o2 o2
Zte[n] = Zgg[n] ~ A7 | 0, % + r

K2B2
¥l = fiei[n) +a[n], z[n] ~.4(0,0%), (®)

wherez[n] is the the channel noise from tixh sensor to the
FC at the timen. The communication noise is assumed to be  Gjven the equivalent observation model (8), the FC can apply

spatially and temporally uncorrelated. . vector Kalman filter to track the souref. Let us define two error
e Uncoded coherent combining:in this case the FC receives covariance matrices

B. Kalman filter at the fusion center

Mnjn—1] = E{(s[n] — §[n|n— 1])(s[n] — §[njn— 1])T}

K
- S f(x N 2
=2, bl +anl, A~ A Cz), (6) M nln] = E { (sin] — &injn])(sin] — &njn))T}

where noise]n] is assumed to be temporally uncorrelated. The Kalman Filtering operation at the FC is summarized below [1]:
These two multi-access models have also been considered in [6]. ® Prediction: . .
§nin—1] = A§n—1jn—1]. 9)
2. SOURCE TRACKING AT THE FUSION CENTER e Update the Prediction Error Covariance Matrix:
Let sensor nodes adopt the following message functions T T
M[nn—1] =AM [n—1jn—1JAT + oZbb". (10)
fix[n) =B[N — un)), Vi, 7 )
1O4[n]) = BOG[n] = HIn) " e Update Kalman Gain Vector:
where u[n] is a reference signal, an@l is an amplification factor M 1h
common to all sensors. The value Bfaffects the transmission gln] = [in—1] ) (11)
power and the final estimation quality at the FC; it will be chosen 0?.+h"™™[njn—1]h
later. To reduce transmission power[n] should be chosen to
closely approximate[n] or sin]. Thus, if feedback channel is e Correction:
available, the FC should broadcast to all the sensors its predicted
value ofs[n] so that the sensors can use it as their reference signal 8n|n] = &njn— 1] +g[n|(ysc[n] — h"&njn—1)). (12)
pnl. In the absence of information feedback, the sensors should _ _
setu[n] = E{x[n]} = E{s[n]} instead. e Update Error Covariance Matrix:
A. An equivalent observation model at fusion center M [n[n] = (I —g[n]hT)M[n|n— 1]. (13)

« When orthogonal multi-access is used, the FC can first computdere, o7 is the equivalent noise variance in the FC observation

the estimate (c.f. (5), (7)) model (8) with
K 02 — 02/K+a2/(KB?), for orthogonal multi-access (14)
feln = K Z N+ pn] fe™ og/K +02/(K2B?), for coherent multi-access
1 K K The source estimatéy[n|n] corresponds to the-th entry of the
= R KB _Z\Zi[n} vector estimate&in|n]. Our goal is to minimize the steady state

MSE y = limn_.. E{(s[n] — $p[n|n])?}. Note that at timen — 1, the
FC should broadcash[njn— 1] (the predicted value afn]) so that
= s+ K i;WI (] + KB i;Zi [n]. it can be used as the reference sigmf] by all sensors at time.
3. ANALYSIS OF SENSOR TRANSMISSION POWER
We now analyze the total network transmission power required to

Thus, we obtain an equivalent observation model at the FC

Yic[n] = §[n] + zs¢[n)], (8) achieve dixed MSE targety at the FC, and quantify the extent of
power reduction resulted from information feedback under both the
where the equivalent noise at the FC is orthogonal and coherent combining channel models. Notice that,

given the AR source model (2) and the channel model (5)-(6), the
1 2 steady state MSk achievable by the Kalman filter (13) is uniquely
Zie[n] =N = % kai ]+ KB .Z\Zi N~ .4 <0, ra KBZ) . determined by the noise varianog, for the equivalent FC obser-
i= i= vation model (8). Thus, the consequence of fixyrig equivalent to
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fixing the noise variancefzc. The latter is in turn uniquely speci-

The expression (18) identifies the maximum noise variaufge

fied by (14) through the choice of channel model and amplificatiorat the FC that achieves the target minimum M®E According

factor 3, regardlessof whether information feedback from the FC
is allowed or not. Consequently, in our ensuing power consumptio
analysis, the value @ will be the same, with or without feedback.
Let P;[n] and Py¢[n] denote the (instantaneous) power consump
tion of the sensor network at the time intervalith and without
feedback from the FC respectively. When we refer to the powe
consumption in the steady state, we will drop the reference to th
specific time interval. Similarly, letis[n] and un¢[n] respectively
denote the reference signal at timewith and without feedback.
Then, we have from (7)

Pnt [n]
P [n]

KBZE { (xi[n] — pin¢[n])2}
= KB2E {(x[n] — pe[n])2}

SelectingB according to (14), we obtain the following total steady

to (14), the knowledge of noise varianoéc in the equivalent FC

Bbservation model (8) allows the optimal amplification factfrs
for both channels to be precomputed in advance.

Proof of Lemma 1. The proof consists of three steps. First, we
berive the expression fov [n|n] from Kalman filter operations (9)-
£13). Then, we prove that in the steady state mafip|n] is a
constant factoly of the identity matrix. Finally, we show that
satisfies (18).

Substituting Kalman gain vector (11) into the minimum MSE
matrix (13) we obtain

M[nn—1]hh"M[njn—1]

Ml = Ml = = M [nin—1n
c

(19)

state network power consumption for the two multi-access channg{here the minimum prediction MSE matrid [njn— 1] is given

models (5)—(6):

or
nf

K )

KoZlimn—e E{ (4[N — tnt[N])?}

PO —
n 2 2
Koi.— o5

Paf = (15)

where Pt (respectively,PSt) stands for the the steady-state total

network power consumption with orthogonal channel (respectively,
coherent combining channel) at the FC. Similarly, we can define

PFe, PP'. The difference of a factdK in P9 andPS

¢ is due to the

by (10). In the steady state, matrickgn|n] and M [n|n — 1] do
not depend on the time interva) so we will drop the dependence
on n to simplify the notations and writs! for steady staté/[n|n]
andM, for steady staté [njn— 1]. With these new notations we
can rewrite (19) in the steady state as follows

Mphh™M

M=Mp— P VP
P 02, +hTMph

Mp=AMAT +gZbb".  (20)

fact that there ar& independent noise samples accumulated in thel e expression in the denominator can be simplified by taking into

orthogonal channels, whereas only one noise sample is present
the coherent combining case.

Theorem 1. Given a steady-state target MSEinformation feed-
back from the FC reduces power consumption of the wireless sens
network by a factor of
RS PO
PR Py

02+ 02

s, (16)
oz+02+ylal?

2

wherea is the vector of AR coefficieragk] and source variances

is given by

dw

) OF /"
. 2"
1|14+ 38 alk exp(—jwk)]

9 = on

17

In the special case of the ARY(source given by the scalar
Gauss-Markov procesgn] = asn— 1] + u[n], a= —a[1], the ex-

ggcount the structure of matri and vectob introduced in (2) as
well as the structure of vectdrin (4)
hTMph=hTAMA Th+oZh"bb"h=a"Ma+02.  (21)
r . . -
Eet M(i,k) denote the(i,k)-th entry of the minimum MSE ma-
trix M, and let vectoa! denote the last row of matri& or, equiv-
alently, the vector of source coefficiersf&]. Then, using the struc-

ture of matrixA and vectob for every entryM (i, k) such that # p
andk # p we obtain from (20) and (21)

f(i+1)f(k+1)

M(@i,k)=M(i+1,k+1)— —2— "
(1. (i+Lk+D) 0z +0f+a'Ma’

(22)

wheref(n+1) =3P, M(n+1,mA(p,m), 0<n<p.

From the definition of the MSE achieved at the FC, all the di-
agonal entries oM are equal tg/ in the steady state. This implies
that in the steady statd(i,i) = M(i+1,i+1), Vi, 0<i < p. Ac-

pression for the steady state source variance (17) can be simplifiegording to (22) we must havi(i+1) =0, Vi, i <0< p, to ensure

Substitutingp = 1 in (17) we arrive at the well-known [1] steady
state variance of the scalar Gauss-Markov process:

2
2 o

_ 2
os = 1 a <1l

Notice thataZ blows up whera — 1. In this case, the power re-
duction factor (16) also becomes unbounded. For a genergh)AR(

that all diagonal entries dfl are equal. Therefore, the steady state
MSE matrixM must be Toeplitz. By analogy, for the entrigs k)
of the last row of matriXM such thaD < k < p, we have from (20)
and (21)
o2
M(p.K) = —————— f(k+1),
" 0% +0t+a'Ma

which are all equal t® because (k+1) =0, Vk, 0<k < p. The

source, the steady state variance depends on its spectral propertyTteplitz structure of matris implies that all entries below the di-
the frequency response has a pole approaching the unit circle, tagonal are zeros. Since the Minimum MSE malvixs symmetric,
integral (17) diverges and the power reduction due to feedback frort must be diagonal and its diagonal entries are steady state MSE of

the FC goes to infinity.
To prove Theorem 1 we will need the following lemma.

Lemma 1. In the steady state the minimum MSE matrix of Kalman
filter (13) is a factory of the identity matrix. The factor is defined
by the following equation

52 _ Yla2+ad)
fc

= y(@Z-1)+ 02 (18)

the sourcey at the FC.
Now, we derive the factoy as a function ofo?, and source

parameterst andg?. Multiplying the two sides of (20) by" and

h respectively and noticing that” Mh = M(p, p) = y due to the
structure of vectoh, we obtain

(hTMph)(hTM ph)

0Z.h™Mph
T = T :
0Z.+hTMph o?.+h"Mph

y=h"Mph— (23)
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=B With FC feedback
=0~ Without feedback

The quadratic formh™ M ph can be calculated from (21) by taking
into account the fact tha¥l = y1, so thath M ph = y||a||2 + 2.
Substituting the last expression into (23) and using simple algebraic
manipulations, we obtain the desired equation (I8).
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Proof of Theorem 1. Consider first the case without feedback. As
was discussed in the beginning of Section 3, we have in this case
Unt = E{s[n]}. Therefore, the power consumed by a sensor in the
network is given by

I

S

S
T
I

Energy consumed by the time interval n
&
3
T
I

,ﬂ

)

S
T
I

Por = E{B2(x[n] ~E{sin})*} =p2 (o2 +03),  (29)

a
3
T
I

where the source variance is definedgs= E { (sn] — E{s[n})?}.

SelectingB according to (14) we can speciB;s = P9t or PSt. The a4
power spectral densitfs(w) of the source (1) is given by Time interval.n
g2 Figure 1: The comparison of sensor energy consump-
fs(w) = 4 5 tion in sensor networks with and without FC feedback,
2m|1+ 3R alk exp(—jawk))| K = 10002 = 2,02 = 10,
Hence, the source variancg can be easily calculated a sequence of reference signgls] known at the FC, each sensor
. transmits the difference
2
o5 = fs(w)dw, — .
2= [ s H(&IN) = pln] — K], i = 1,....K. (26)
which leads to the expression stated in (17). Depending on the type of the communication channel, the received

Let us now consider the case with feedback. In that case sensogignal at time intervah can be expressed as
use the source predictiqry [n] = §;[n|n— 1] as the reference signal
[

for transmission. Thus, the consumed power per sensor is yee
N 2 r
Py = E(B2 ([~ Splnn—1))%) = B2 (Minn—1)(p.p) +.03) . V|
) o o Subtracting the contribution due to the known sequerncd, m=
whereM([n|n—1](p, p) is the(p, p)-th entry of minimum prediction  1,... n, the FC extracts the updated estimate
MSE matrixM[njn—1]. In the steady state, th@, p)-th entry of

minimum prediction MSE matrii [n|jn— 1] can be calculated from N
the Kalman filter minimum prediction MSE matrix (10) O[] =

& (X fi(x[n])) +2n]), for coherent multi-access

n|
n =% K, (fix[n]) +z[n]), fororthogonal multi-access

Sk

S (ulm] —y[m), @7)
m=1

- T, 52_ 2, 52
Mnin—1i(p,p) =aMa’ +o; =y ||al|" + 0§, wherey|m] can be specialized to eithgi°[m| or y°'[m] for the con-

whereM is the steady state minimum MSE matrix, and the Iastlszlget';ed ((:jommurucatlo.n cilannfel. In the presence of feedfback, the
equality follows from Lemmal. Thus, the power consumption of roadcasts its estimagin| for sensors to use as a reference

each sensor is given by signal: pg[n+1] = 6[n], n=1,....N— 1, andp;[1] = 8[0] is the
initial guess off at the FC. Then, simple algebraic transformations

Pf — [32 (V ||aH2+ 05+ Uv%) . (25) of (27) lead to the following sequence of estimates at the FC
N 1 n K 1 n
Selecting aB according to (14) allows us to specify power con- oin =6+~ > an[m| ZWi | ——= > zicm], (28)
sumption for either orthogonal chanrigl = P{" or coherent com- K =1 i= nK =1

- Coce o .
bining channeP; = P{*. Finally, the power reduction factor stated wherean[m = 1/m+1/(m+1)+...+1/n, and the effective chan-

in Theoreml is obtained as a ratio of (24) and (25). nel noise is given by:
4. UNKNOWN PARAMETER ESTIMATION PROBLEM Zelm| = Zjm, for coherent multi-access
Now we consider a constant signal model with Zsc[m = YK z[m], for orthogonal multi-access
sl = 0, Suppose that the estimation talésime intervals to achieve a tar-

get MSE at the FC. Combining (26) and (28) we calculate the the
which corresponds ta= 1 anda? = 0in the AR source model (2). €Nergy consumed by a sensor to perféiriransmissions to the FC,
In this case, the source tracking problem reduces to the problem #fhich can be upper bounded by the function
estimating an unknown static parameferThe goal is to construct

a sequence of parameter estimates at the FC with increasing quality E.INl<E N1/M(K-2)02 of 202 29
until a specified target MSEis achieved. As in the AR case, we are N <Ei+ Z K(n+1) ' Kan + Kn |- (29)
interested in the effect of information feedback on the sensor net- n=1

work'’s power consumption. Notice that the power reduction factor N 5.

in (16) is undefined foa = 1 anda? = 0. We show in this section WhereEy = E{(6 —8][0])"} + o is the energy consumed at the

that the power reduction factor in this case is in fact unbounded. first time interval with the initial parameter gue80]; and a is
Let each sensor collect observationn = 6 +w;[m, m=  a parameter of the communication channel:= 1 for orthogonal

1,...,n, and calculate its local averaggn| = 31_; X [m]/n. Given  channels andr = 2 for the coherent combining at the FC. It can be
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Figure 2: Power consumption per sensor as a function of the nefsigure 3: Power consumption per sensor as a function of the target

work size. The target MSE at the Fusion Centegris0.01.

MSE at the Fusion Center. The network siz&is- 300sensors.

shown that bound (29) is asymptotically tight. Thus, with informa-are performed with the network &00 sensors. The difference in

tion feedback, the consumed energy per sensor scalegdwith

communication model results in the power factoKof 300which

number of transmissiond. In the absence of feedback from the was justified by (15). For the target MSE ranging froid07t0 0.01

FC, the sensors must use a constant reference signal known at

tthe power reduction decreases slightly fréhv423 to 2.7414

FC, unf[n = é[o}, n=1,...,N. The FC calculates the parameter Which is consistent with (16). In Figure 3, the maximum deviation

estimates according ®@[n] = (6[0] —y[n])/n. In this case, for both

types of communication channel, the transmission of a sequence
of local observations results in a sensor energy consumption that

grows linearly withN:
N
1
_ 2
Ent[N] = EIN+ anzlﬁ. (30)

Therefore, the energy (or power) reduction fack; [N]/E¢[N]
asymptotically scales likdl/logN — o asN — . Note, in both

from the theoretical bound (16) is again witt@fo.

6. CONCLUSIONS

This paper considers the role of information feedback in the con-
text of distributed signal tracking by a sensor network with a FC.
It is shown that if the FC can feed back its intermediate estimates
reliably to the sensors, there can be a constant factor power reduc-
tion in the sensor transmission power required to achieve a target
MSE at the FC. This constant factor depends on the power spectral

cases the total energy spent on estimation goes to infinity Witlyensity of the source signal being tracked, and can grow unbounded

increasing\, but the scaling factor dramatically favors the network

the source is static. Notice that the sensor power required to re-

. . ) ; if
with feedback. Figure 1 demonstrates that information fee‘jbaclfeive the feedback information has not been accounted for in our

allows the sensors to make efficient use of their energy budg

while delivering the same MSE performance at the FC.

5. SIMULATIONS
In simulations we track a source specified by BRfodel:

§[n] = 0.5s[n— 1] 4+ 0.3s[n— 2] 4+ 0.15s[n — 3] + u[n.

The source is initialized with zerosn| = 0, for alln < 0. The vari-
ance ofu[n] is taken to beg? = 1. The observation noise variance
is o2 = 2 and the communication noise variancess= 10. The
network starts tracking the source at time intenvat 10 and pro-
ceeds untih = 10000 All tracking/estimation algorithms are tested
with 100runs.

eénalysis. In [5], it was noted that the energy cost for packet recep-
tion is only slightly more than that of listening to an idle channel,
while transmitting energy i4.4 times listening. Thus, the receive
power required for implementing the information feedback scheme
studied herein is about 70% of the sensors’ transmit power. This
effectively reduces the total power saving (16) by a factor of 1.7.
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