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ABSTRACT

We study the role of information feedback for the problem of dis-
tributed signal tracking/estimation using a sensor network with a
fusion center. Assuming that the fusion center has sufficient en-
ergy to reliably feed back its intermediate estimates, we show that
the sensors can substantially reduce their power consumption by
using the feedback information in a manner similar to the stochas-
tic approximation scheme of Robbins-Monro. For the problem of
tracking an autoregressive source or estimating an unknown param-
eter, we quantify the total achievable power saving (as compared to
the distributed schemes with no feedback), and provide numerical
simulations to confirm the theoretical analysis.

1. PROBLEM FORMULATION

Consider the problem of tracking a signal source or estimating an
unknown parameter by a wireless sensor network with a fusion cen-
ter (FC). Given that the energy supply to each sensor is limited, it is
important that sensor operations are energy-efficient so as to ensure
a maximum network lifetime. In practice, a major part of sensor
energy is used for communication with the FC. As a result, some
recent work has focussed on reducing power consumption either by
optimally adjusting quantization and transmission power levels at
each sensor in an inhomogeneous sensing environment [3], or by
exploiting the spatial correlation in sensor observations [4]. In both
studies, communication between the sensors and the FC is assumed
to be one-way, and no information feedback from the FC is allowed.
In some practical situations, the FC (e.g., an unmanned aerial vehi-
cle) may have substantially more energy supply than the sensors,
and therefore can feed back information to the sensors reliably if
needed. An interesting question is: what benefits can information
feedback bring to a sensor network system?

From a signal processing standpoint, allowing information
feedback cannot increase the estimation performance of a sensor
network. This is because the information provided by the FC can
only be a suitable summary of the information collected by the sen-
sors; there cannot be any “fresh information” from the FC. Thus,
even with feedback, the sensor network performance is still upper
bounded by that of a centralized counterpart which is further lim-
ited by the same Cramer-Rao bound as in the case without feedback.
However, from a power consumption point of view, allowing infor-
mation feedback does bring a major benefit. As we show in this
paper, by suitably exploiting feedback information from the FC, a
sensor network can significantly reduce its power consumption re-
quired to achieve a given mean squared error (MSE) performance.
Thus, in some sense, information feedback effectively lets the FC
tradeoff its own power with that of the sensors as both sides collab-
orate to achieve a given signal processing performance. The center
piece of our proposed scheme is a low-power communication strat-
egy based on the stochastic approximation procedure of Robbins-
Monro. For the problem of tracking an autoregressive (AR) source,
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our analysis shows that information feedback can result in a con-
stant factor power reduction, the size of which is dependent on fi-
nal MSE requirement as well as the power spectral density of the
source. For the problem of estimating an unknown parameter, it is
shown that the power reduction factor grows unbounded as the final
MSE requirement tends to zero.

Our work is inspired by the information theoretic study [2] of
receiver feedback for a memoryless point-to-point communication
channel. In that context, even though information feedback cannot
increase channel capacity, it can significantly reduce the probability
of error at the receiver [2]. Our current work can be viewed
as exploiting information feedback in the context of distributed
signal processing with multiple sensors, as opposed to the single
point-to-point communication considered by [2].

A. Source model

Consider ap-th order autoregressive (AR) source modeled as

s[n] =−
p

∑
k=1

a[k]s[n−k]+u[n], u[n]∼N (0,σ2
u ). (1)

The source is initialized withs[n] = 0 for n≤ 0. The model coeffi-
cientsa[k], k = 1, . . . , p as well as the model orderp are assumed to
be known. The AR model can also be expressed in a vector form

s[n] = As[n−1]+bu[n], (2)

where the vector source states[n] ∈ Rp is defined by

s[n] =




s[n− p+1]
...

s[n]




and matrixA ∈ Rp×p and vectorb ∈ Rp×1 are defined by

A =




0 1 0 0. . .0
0 0 1 0. . .0
...

...
0 0 0 . . . 0 1
−a[p] . . . −a[1]




, b =




0
0
...
0
1




. (3)

B. Sensor observation model

Suppose sources[n] is observed by a sensor network withK
sensors. The source observations are corrupted by i.i.d. (spatially
and temporally) Gaussian noise

xi [n] = s[n]+wi [n], wi [n]∼N (0,σ2
w), i = 1, . . . ,K.

An equivalent vector model is

xi [n] = hTsi [n]+wi [n], h = [0, . . . ,0,1]T , i = 1, . . . ,K. (4)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



We assume that, at each timen, the i-th sensor transmits an analog
messagefi(xi [n]) of the observed signalxi [n] to the FC. No local
interaction among sensors is considered in this paper.

C. Communication channel to the fusion center

Different designs of MAC layer are possible in practical im-
plementation of sensor networks. We consider two specific MAC
strategies: i) uncoded orthogonal transmissions and ii) uncoded
coherent combining. The former can be implemented using
CDMA/TDMA/FDMA schemes, while the latter can be realized in
systems with synchronized transmission over static channels.
• Uncoded orthogonal transmissions:the FC receives separate

signals from all transmitting sensors

yor
i [n] = fi(xi [n])+zi [n], zi [n]∼N (0,σ2

z ), (5)

wherezi [n] is the the channel noise from thei-th sensor to the
FC at the timen. The communication noise is assumed to be
spatially and temporally uncorrelated.

• Uncoded coherent combining:in this case the FC receives

ycc[n] =
K

∑
i=1

fi(xi [n])+z[n], z[n]∼N (0,σ2
z ), (6)

where noisez[n] is assumed to be temporally uncorrelated.
These two multi-access models have also been considered in [6].

2. SOURCE TRACKING AT THE FUSION CENTER

Let sensor nodes adopt the following message functions

fi(xi [n]) = β (xi [n]−µ [n]), ∀ i, (7)

whereµ [n] is a reference signal, andβ is an amplification factor
common to all sensors. The value ofβ affects the transmission
power and the final estimation quality at the FC; it will be chosen
later. To reduce transmission power,µ[n] should be chosen to
closely approximatexi [n] or s[n]. Thus, if feedback channel is
available, the FC should broadcast to all the sensors its predicted
value ofs[n] so that the sensors can use it as their reference signal
µ[n]. In the absence of information feedback, the sensors should
setµ [n] = E{xi [n]}= E{s[n]} instead.

A. An equivalent observation model at fusion center

• When orthogonal multi-access is used, the FC can first compute
the estimate (c.f. (5), (7))

yor
f c[n] =

1
Kβ

K

∑
i=1

yor
i [n]+ µ[n]

=
1
K

K

∑
i=1

xi [n]+
1

Kβ

K

∑
i=1

zi [n]

= s[n]+
1
K

K

∑
i=1

wi [n]+
1

Kβ

K

∑
i=1

zi [n].

Thus, we obtain an equivalent observation model at the FC

yf c[n] = s[n]+zf c[n], (8)

where the equivalent noise at the FC is

zf c[n] = zor
f c[n] =

1
K

K

∑
i=1

wi [n]+
1

Kβ

K

∑
i=1

zi [n]∼N

(
0,

σ2
w

K
+

σ2
z

Kβ 2

)
.

• With the coherent combining (6) channel, the FC has

ycc
f c[n] =

1
Kβ

ycc[n]+ µ [n]

=
1
K

K

∑
i=1

xi [n]+
1

Kβ
z[n]

= s[n]+
1
K

K

∑
i=1

wi [n]+
1

Kβ
z[n],

which also can be expressed as (8) with Gaussian noise

zf c[n] = zcc
f c[n]∼N

(
0,

σ2
w

K
+

σ2
z

K2β 2

)
.

B. Kalman filter at the fusion center

Given the equivalent observation model (8), the FC can apply
vector Kalman filter to track the sources[n]. Let us define two error
covariance matrices

M [n|n−1] = E
{
(s[n]− ŝ[n|n−1])(s[n]− ŝ[n|n−1])T

}

M [n|n] = E
{
(s[n]− ŝ[n|n])(s[n]− ŝ[n|n])T

}
.

The Kalman Filtering operation at the FC is summarized below [1]:
• Prediction:

ŝ[n|n−1] = Aŝ[n−1|n−1]. (9)

• Update the Prediction Error Covariance Matrix:

M [n|n−1] = AM [n−1|n−1]AT +σ2
ubbT . (10)

• Update Kalman Gain Vector:

g[n] =
M [n|n−1]h

σ2
f c +hTM [n|n−1]h

. (11)

• Correction:

ŝ[n|n] = ŝ[n|n−1]+g[n](yf c[n]−hT ŝ[n|n−1]). (12)

• Update Error Covariance Matrix:

M [n|n] = (I −g[n]hT)M [n|n−1]. (13)

Here, σ2
f c is the equivalent noise variance in the FC observation

model (8) with

σ2
f c =

{
σ2

w/K +σ2
z /(Kβ 2), for orthogonal multi-access,

σ2
w/K +σ2

z /(K2β 2), for coherent multi-access.
(14)

The source estimatêsp[n|n] corresponds to thep-th entry of the
vector estimatês[n|n]. Our goal is to minimize the steady state
MSE γ = limn→∞ E{(s[n]− ŝp[n|n])2}. Note that at timen−1, the
FC should broadcastŝp[n|n−1] (the predicted value ofs[n]) so that
it can be used as the reference signalµ[n] by all sensors at timen.

3. ANALYSIS OF SENSOR TRANSMISSION POWER

We now analyze the total network transmission power required to
achieve afixedMSE targetγ at the FC, and quantify the extent of
power reduction resulted from information feedback under both the
orthogonal and coherent combining channel models. Notice that,
given the AR source model (2) and the channel model (5)-(6), the
steady state MSEγ achievable by the Kalman filter (13) is uniquely
determined by the noise varianceσ2

f c for the equivalent FC obser-
vation model (8). Thus, the consequence of fixingγ is equivalent to
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fixing the noise varianceσ2
f c. The latter is in turn uniquely speci-

fied by (14) through the choice of channel model and amplification
factor β , regardlessof whether information feedback from the FC
is allowed or not. Consequently, in our ensuing power consumption
analysis, the value ofβ will be the same, with or without feedback.
Let Pf [n] and Pn f [n] denote the (instantaneous) power consump-
tion of the sensor network at the time intervaln with and without
feedback from the FC respectively. When we refer to the power
consumption in the steady state, we will drop the reference to the
specific time interval. Similarly, letµ f [n] and µn f [n] respectively
denote the reference signal at timen with and without feedback.
Then, we have from (7)

Pn f [n] = Kβ 2E
{
(xi [n]−µn f [n])2

}

Pf [n] = Kβ 2E
{
(xi [n]−µ f [n])2

}

Selectingβ according to (14), we obtain the following total steady
state network power consumption for the two multi-access channel
models (5)–(6):

Por
n f =

Kσ2
z limn→∞ E

{
(xi [n]−µn f [n])2

}

Kσ2
f c−σ2

w
, Pcc

n f =
Por

n f

K
, (15)

wherePor
n f (respectively,Pcc

n f ) stands for the the steady-state total
network power consumption with orthogonal channel (respectively,
coherent combining channel) at the FC. Similarly, we can define
Pcc

f , Por
f . The difference of a factorK in Por

n f andPcc
n f is due to the

fact that there areK independent noise samples accumulated in the
orthogonal channels, whereas only one noise sample is present in
the coherent combining case.

Theorem 1. Given a steady-state target MSEγ, information feed-
back from the FC reduces power consumption of the wireless sensor
network by a factor of

Pcc
n f

Pcc
f

=
Por

n f

Por
f

=
σ2

w +σ2
s

σ2
w +σ2

u + γ ‖a‖2 , (16)

wherea is the vector of AR coefficientsa[k] and source varianceσ2
s

is given by

σ2
s =

σ2
u

2π

∫ π

−π

dω∣∣1+∑p
k=1a[k]exp(− jωk)

∣∣2 . (17)

In the special case of the AR(1) source given by the scalar
Gauss-Markov processs[n] = as[n− 1] + u[n], a = −a[1], the ex-
pression for the steady state source variance (17) can be simplified.
Substitutingp = 1 in (17) we arrive at the well-known [1] steady
state variance of the scalar Gauss-Markov process:

σ2
s =

σ2
u

1−a2 , a2 < 1.

Notice thatσ2
s blows up whena→ 1. In this case, the power re-

duction factor (16) also becomes unbounded. For a general AR(p)
source, the steady state variance depends on its spectral property. If
the frequency response has a pole approaching the unit circle, the
integral (17) diverges and the power reduction due to feedback from
the FC goes to infinity.

To prove Theorem 1 we will need the following lemma.

Lemma 1. In the steady state the minimum MSE matrix of Kalman
filter (13) is a factorγ of the identity matrix. The factorγ is defined
by the following equation

σ2
f c =

γ (γ ‖a‖2 +σ2
u )

γ (‖a‖2−1)+σ2
u

. (18)

The expression (18) identifies the maximum noise varianceσ2
f c

at the FC that achieves the target minimum MSEγ. According
to (14), the knowledge of noise varianceσ2

f c in the equivalent FC
observation model (8) allows the optimal amplification factorsβ
for both channels to be precomputed in advance.

Proof of Lemma 1. The proof consists of three steps. First, we
derive the expression forM [n|n] from Kalman filter operations (9)-
(13). Then, we prove that in the steady state matrixM [n|n] is a
constant factorγ of the identity matrix. Finally, we show thatγ
satisfies (18).

Substituting Kalman gain vector (11) into the minimum MSE
matrix (13) we obtain

M [n|n] = M [n|n−1]− M [n|n−1]hhTM [n|n−1]
σ2

f c +hTM [n|n−1]h
, (19)

where the minimum prediction MSE matrixM [n|n− 1] is given
by (10). In the steady state, matricesM [n|n] and M [n|n− 1] do
not depend on the time intervaln, so we will drop the dependence
on n to simplify the notations and writeM for steady stateM [n|n]
andM p for steady stateM [n|n−1]. With these new notations we
can rewrite (19) in the steady state as follows

M = M p− M phhTM p

σ2
f c +hTM ph

, M p = AMA T +σ2
ubbT . (20)

The expression in the denominator can be simplified by taking into
account the structure of matrixA and vectorb introduced in (2) as
well as the structure of vectorh in (4)

hTM ph = hTAMA Th+σ2
u hTbbTh = aTMa +σ2

u . (21)

Let M(i,k) denote the(i,k)-th entry of the minimum MSE ma-
trix M , and let vectoraT denote the last row of matrixA or, equiv-
alently, the vector of source coefficientsa[k]. Then, using the struc-
ture of matrixA and vectorb for every entryM(i,k) such thati 6= p
andk 6= p we obtain from (20) and (21)

M(i,k) = M(i +1,k+1)− f (i +1) f (k+1)
σ2

f c +σ2
u +aTMa

, (22)

where f (n+1) = ∑p
m=1M(n+1,m)A(p,m), 0≤ n < p.

From the definition of the MSE achieved at the FC, all the di-
agonal entries ofM are equal toγ in the steady state. This implies
that in the steady stateM(i, i) = M(i +1, i +1), ∀ i, 0≤ i < p. Ac-
cording to (22) we must havef (i +1) = 0, ∀ i, i ≤ 0< p, to ensure
that all diagonal entries ofM are equal. Therefore, the steady state
MSE matrixM must be Toeplitz. By analogy, for the entries(p,k)
of the last row of matrixM such that0≤ k < p, we have from (20)
and (21)

M(p,k) =
σ2

f c

σ2
f c +σ2

u +aTMa
f (k+1),

which are all equal to0 becausef (k+1) = 0, ∀ k, 0≤ k < p. The
Toeplitz structure of matrixM implies that all entries below the di-
agonal are zeros. Since the Minimum MSE matrixM is symmetric,
it must be diagonal and its diagonal entries are steady state MSE of
the sourceγ at the FC.

Now, we derive the factorγ as a function ofσ2
f c and source

parametersa andσ2
u . Multiplying the two sides of (20) byhT and

h respectively and noticing thathTMh = M(p, p) = γ due to the
structure of vectorh, we obtain

γ = hTM ph− (hTM ph)(hTM ph)
σ2

f c +hTM ph
=

σ2
f chTM ph

σ2
f c +hTM ph

. (23)
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The quadratic formhTM ph can be calculated from (21) by taking
into account the fact thatM = γ I , so thathTM ph = γ‖a‖2 + σ2

u .
Substituting the last expression into (23) and using simple algebraic
manipulations, we obtain the desired equation (18).2

Proof of Theorem 1. Consider first the case without feedback. As
was discussed in the beginning of Section 3, we have in this case
µn f = E{s[n]}. Therefore, the power consumed by a sensor in the
network is given by

Pn f = E
{

β 2 (xi [n]−E{s[n]})2
}

= β 2
(

σ2
s +σ2

w

)
, (24)

where the source variance is defined asσ2
s = E

{
(s[n]−E{s[n]})2

}
.

Selectingβ according to (14) we can specifyPn f = Por
n f or Pcc

n f . The
power spectral densityfs(ω) of the source (1) is given by

fs(ω) =
σ2

u

2π
∣∣1+∑p

k=1a[k]exp(− jωk)
∣∣2 .

Hence, the source varianceσ2
s can be easily calculated

σ2
s =

∫ π

−π
fs(ω)dω,

which leads to the expression stated in (17).
Let us now consider the case with feedback. In that case sensors

use the source predictionµ f [n] = ŝp[n|n−1] as the reference signal
for transmission. Thus, the consumed power per sensor is

Pf = E{β 2(
xi [n]− ŝp[n|n−1]})2}= β 2

(
M[n|n−1](p, p)+σ2

w

)
,

whereM[n|n−1](p, p) is the(p, p)-th entry of minimum prediction
MSE matrixM [n|n−1]. In the steady state, the(p, p)-th entry of
minimum prediction MSE matrixM [n|n−1] can be calculated from
the Kalman filter minimum prediction MSE matrix (10)

M[n|n−1](p, p) = aMaT +σ2
u = γ ‖a‖2 +σ2

u ,

whereM is the steady state minimum MSE matrix, and the last
equality follows from Lemma1. Thus, the power consumption of
each sensor is given by

Pf = β 2
(

γ ‖a‖2 +σ2
u +σ2

w

)
. (25)

Selecting aβ according to (14) allows us to specify power con-
sumption for either orthogonal channelPf = Por

f or coherent com-
bining channelPf = Pcc

f . Finally, the power reduction factor stated
in Theorem1 is obtained as a ratio of (24) and (25).2

4. UNKNOWN PARAMETER ESTIMATION PROBLEM

Now we consider a constant signal model with

s[n] = θ ,

which corresponds toa= 1 andσ2
u = 0 in the AR source model (2).

In this case, the source tracking problem reduces to the problem of
estimating an unknown static parameterθ . The goal is to construct
a sequence of parameter estimates at the FC with increasing quality
until a specified target MSEγ is achieved. As in the AR case, we are
interested in the effect of information feedback on the sensor net-
work’s power consumption. Notice that the power reduction factor
in (16) is undefined fora = 1 andσ2

u = 0. We show in this section
that the power reduction factor in this case is in fact unbounded.

Let each sensor collect observationsxi [m] = θ + wi [m], m =
1, . . . ,n, and calculate its local averagēxi [n] = ∑n

m=1xi [m]/n. Given

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

Time interval, n

E
ne

rg
y 

co
ns

um
ed

 b
y 

th
e 

tim
e 

in
te

rv
al

 n

With FC feedback
Without feedback

Figure 1: The comparison of sensor energy consump-
tion in sensor networks with and without FC feedback,
K = 100,σ2

w = 2,σ2
z = 10.

a sequence of reference signalsµ [n] known at the FC, each sensor
transmits the difference

fi(x̄i [n]) = µ[n]− x̄i [n], i = 1, . . . ,K. (26)

Depending on the type of the communication channel, the received
signal at time intervaln can be expressed as

ycc[n] = 1
K

(
∑K

i=1 fi(x̄i [n])+z[n]
)
, for coherent multi-access,

yor[n] = 1
K ∑K

i=1 ( fi(x̄i [n])+zi [n]) , for orthogonal multi-access.

Subtracting the contribution due to the known sequenceµ[m], m=
1, . . . ,n, the FC extracts the updated estimate

θ̂ [n] =
1
n

n

∑
m=1

(µ [m]−y[m]) , (27)

wherey[m] can be specialized to eitherycc[m] or yor[m] for the con-
sidered communication channel. In the presence of feedback, the
FC broadcasts its estimatêθ [n] for sensors to use as a reference
signal:µ f [n+ 1] = θ̂ [n], n = 1, . . . ,N−1, andµ f [1] = θ̂ [0] is the
initial guess ofθ at the FC. Then, simple algebraic transformations
of (27) lead to the following sequence of estimates at the FC

θ̂ [n] = θ +
1

nK

n

∑
m=1

an[m]
K

∑
i=1

wi [m]− 1
nK

n

∑
m=1

zf c[m], (28)

wherean[m] = 1/m+1/(m+1)+ . . .+1/n, and the effective chan-
nel noise is given by:

zf c[m] = z[m], for coherent multi-access,
zf c[m] = ∑K

i=1zi [m], for orthogonal multi-access.

Suppose that the estimation takesN time intervals to achieve a tar-
get MSE at the FC. Combining (26) and (28) we calculate the the
energy consumed by a sensor to performN transmissions to the FC,
which can be upper bounded by the function

Ef [N]≤ E1 +
N−1

∑
n=1

(
(K−2)σ2

w

K(n+1)
+

σ2
z

Kα n
+

2σ2
w

Kn

)
. (29)

whereE1 = E{(θ − θ̂ [0]
)2}+ σ2

w is the energy consumed at the
first time interval with the initial parameter guessθ̂ [0]; and α is
a parameter of the communication channel:α = 1 for orthogonal
channels andα = 2 for the coherent combining at the FC. It can be
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Figure 2: Power consumption per sensor as a function of the net-
work size. The target MSE at the Fusion Center isγ = 0.01.

shown that bound (29) is asymptotically tight. Thus, with informa-
tion feedback, the consumed energy per sensor scales aslogN with
number of transmissionsN. In the absence of feedback from the
FC, the sensors must use a constant reference signal known at the
FC, µn f [n] = θ̂ [0], n = 1, . . . ,N. The FC calculates the parameter
estimates according tôθ [n] = (θ̂ [0]−y[n])/n. In this case, for both
types of communication channel, the transmission of a sequence
of local observations results in a sensor energy consumption that
grows linearly withN:

En f [N] = E1N+σ2
w

N

∑
n=1

1
n
. (30)

Therefore, the energy (or power) reduction factorEn f [N]/Ef [N]
asymptotically scales likeN/ logN → ∞ asN → ∞. Note, in both
cases the total energy spent on estimation goes to infinity with
increasingN, but the scaling factor dramatically favors the network
with feedback. Figure 1 demonstrates that information feedback
allows the sensors to make efficient use of their energy budget
while delivering the same MSE performance at the FC.

5. SIMULATIONS

In simulations we track a source specified by AR(3) model:

s[n] = 0.5s[n−1]+0.3s[n−2]+0.15s[n−3]+u[n].

The source is initialized with zeros:s[n] = 0, for all n≤ 0. The vari-
ance ofu[n] is taken to beσ2

u = 1. The observation noise variance
is σ2

w = 2 and the communication noise variance isσ2
z = 10. The

network starts tracking the source at time intervaln = 10 and pro-
ceeds untiln= 10000. All tracking/estimation algorithms are tested
with 100runs.

Figure 2 demonstrates the power consumption per sensor as a
function of the network size. The four curves correspond to two
communication channel models, orthogonal channels to the FC and
coherent combining at the FC, and two tracking models, with and
without the feedback from the FC. The target MSE ofγ = 0.01 has
been chosen for the simulations. According to the Theorem 1 the
power reduction due to the feedback from the FC is constant for
a fixed target MSE. Evaluating the expression (16) of the power
reduction with the specified parameters we obtain

Pcc
n f

Pcc
f

=
Por

n f

Por
f

= 2.86. (31)

The maximum deviation from this factor in Figure 2 is within6%.
Figure 3 shows the dependence of power consumption of each

sensor as a function of the target MSE at the FC. These simulations
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Figure 3: Power consumption per sensor as a function of the target
MSE at the Fusion Center. The network size isK = 300sensors.

are performed with the network of300 sensors. The difference in
communication model results in the power factor ofK = 300which
was justified by (15). For the target MSE ranging from0.007to 0.01
the power reduction decreases slightly from2.7423 to 2.7414,
which is consistent with (16). In Figure 3, the maximum deviation
from the theoretical bound (16) is again within6%.

6. CONCLUSIONS

This paper considers the role of information feedback in the con-
text of distributed signal tracking by a sensor network with a FC.
It is shown that if the FC can feed back its intermediate estimates
reliably to the sensors, there can be a constant factor power reduc-
tion in the sensor transmission power required to achieve a target
MSE at the FC. This constant factor depends on the power spectral
density of the source signal being tracked, and can grow unbounded
if the source is static. Notice that the sensor power required to re-
ceive the feedback information has not been accounted for in our
analysis. In [5], it was noted that the energy cost for packet recep-
tion is only slightly more than that of listening to an idle channel,
while transmitting energy is1.4 times listening. Thus, the receive
power required for implementing the information feedback scheme
studied herein is about 70% of the sensors’ transmit power. This
effectively reduces the total power saving (16) by a factor of 1.7.
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