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ABSTRACT
Thin-plate spline models have been used extensively for
data-interpolation in several problem domains. In this pa-
per, we present a tutorial overview of their theory and high-
light their advantages and disadvantages, pointing out spe-
cific characteristics relevant in printer data interpolation ap-
plications. We evaluate the accuracy of thin-plate splines for
printer data interpolation and discuss how available knowl-
edge of printer’s physical characteristics may be beneficially
exploited to improve performance.

1. INTRODUCTION

The majority of present day color imaging systems use color
management based on the principles of device independent
color. In such an environment, device color characteriza-
tion [1] is a necessary step for ensuring a stable and desired
response. For a typical color printer, the characterization pro-
cess consists of two main steps illustrated schematically in
Fig. 1 for a CMYK printer. In the first step (Fig. 1(a)), using
appropriate measurements, the (forward) device response is
estimated which allows one to determine the color that the
printer produces in response to a given CMYK input, where
a device independent color space such as CIELAB [2] is
used to represent color values numerically. Once the for-
ward response is available, an ”inverse” is determined for the
purpose of correction. The correction transform is incorpo-
rated in front of the printer as shown in Fig. 1(b) and trans-
forms color specifications in device independent coordinates
into CMYK signals required by the printer to produce corre-
sponding colors.
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Figure 1: Printer color characterization: (a) Forward Device
Response and (b) Color Correction using Inverse

For fast implementation, the forward and inverse trans-
formations for device color correction are stored as look-
up-tables. Measurement and storage restrictions mandate

that only a sub-sampled version of the look-up tables can
be stored and values at other nodes need to be determined
using interpolation. For instance, for a CMYK printer ad-
dressed using 8 bits for each of the 4 channels, there are
(

28
)4

= 4× 230 possible, which would require for 8 bit per
CIELAB coordinate, 12MB of space and in excess of 4×109

measurements for exhaustive measurement of the response.
Similar arguments apply for the inverse transformation. In-
terpolation of the forward and inverse device responses is
therefore a fundamental ingredient in color imaging systems.
In our work, we will consider particularly the forward inter-
polation problem, wherein the device response for a small
subset of CMYK values is measured and the response for
other CMYK values must be determined through interpola-
tion. We consider particularly the application of thin-plate
splines [3] to the printer data interpolation problem.

The rest of this paper is organized as follows. In Sec-
tion 2, we present related work and motivate the exploration
of alternate interpolation methods. In Section 3 we review
the theory of splines and illustrate using a simple 1-D exam-
ple how smoothing splines can offer advantages over inter-
polating splines in noisy data interpolation problems such as
the problem at hand. In Section 4 we review the theory of
thin-plate splines and discuss the constraints and characteris-
tics of this powerful smoothing spline interpolation method.
In Section 5, we present experimental results demonstrating
the application of thin-plate spline interpolation to the (for-
ward) printer-data interpolation. Finally in Section 6, we end
with some discussion and concluding remarks.

2. RELATED WORK

Various methods have been reported in the literature for the
purpose of (forward) printer data interpolation. These fall
in two broad classes: methods based on physical models of
the print process and methods using interpolation or empir-
ical data fitting. The modeling techniques primarily use the
Neugebauer model [4, 5] and several of its empirical vari-
ants [6, 7, 8, 9, 10]. The most prominent among the latter
class is the cellular Neugebauer model, which may also be
viewed as a hybrid approach that combines aspects of mod-
eling and interpolation. These methods have the advantage
that they exploit the physical characteristics of the printing
process and can therefore offer a fairly good representation
of the device response using only a few measurements. They
however have the disadvantage that in order to obtain the
model parameters, access is required to the “raw” device, i.e.,
the capability to print using the actual control values used to
drive the device (For example, the CMYK values in the case
of a typical CMYK printer). This may often be unavailable
and additionally some of the measurements required for the
modeling, e.g. 100% each of C, M, Y, and K; may be infea-
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sible due to physical limitations (e.g flow of inks in the case
of ink-jet and peeling of toner in the case of printers). These
limitations and inherent model inaccuracies sometimes limit
the utility of model based methods.

Interpolation/data-fitting methods work without a priori
knowledge of the device (apart from some assumptions of
smoothness) and therefore do not encounter the same limita-
tions. For modestly accurate representations, however, they
typically require more measurements than the model-based
methods. This was once a severe limitation but is not as se-
vere a concern any more because of the availability of auto-
mated and faster color measurement instrumentation. Sev-
eral interpolation approaches have been proposed for use in
color conversion (see [11] for a survey and [12, 13] for addi-
tional examples). In addition, a number of data-fitting meth-
ods have been proposed that are similar to interpolation but
offer the potential for some smoothing/regularization of the
measured data, which is often desirable. Common meth-
ods in this class are inverse distance-weighted interpolation
methods [14, 15] and locally-weighted polynomial regres-
sion [16].

One aspect that both the model-based methods and the
interpolation methods handle only to a limited extent is
the noise in the measurement data that impacts the inter-
polation nodes/model data. For the model based methods,
least-squares regression [10] and total-least-squares regres-
sion [9] have been proposed as methods for partly reducing
the noise in measured data used as part of the model, though
fundamentally the methods rely on noiseless data assump-
tions. Strict interpolation based methods, by definition, en-
sure perfect reconstruction at the sample points and there-
fore also implicitly assume these are noiseless. Distance-
weighted and locally-weighted polynomial regression allow
for some smoothing in interpolation process but the amount
of smoothing must be determined by empirical evaluation
and often impacts the accuracy of the representation too due
to restrictions it places on the resulting functions.

In this paper, we consider the use of thin-plate-splines [3,
17] for printer data interpolation. These are based on a
framework that combines smoothing and interpolation and
allow for a principled estimation of the smoothing parameter
based on cross-validation [17, 18]. We first begin by a brief
review of the well-known 1-D spline interpolation and illus-
trate using an example from printer color calibration, how
this class of methods can offer an advantage in printer data
interpolation.

3. SPLINES

The generic term ”spline” is used to refer to a wide class of
functions that are used in applications requiring data interpo-
lation and/or smoothing1. Splines may be used for interpo-
lation and/or smoothing of either one-dimensional or multi-
dimensional data. Spline functions for interpolation are nor-
mally determined as the minimizers of suitable measures of
roughness (for example integral squared curvature) subject
to the interpolation constraints. Smoothing splines may be
viewed as generalizations of interpolation splines where the
functions are determined to minimize a weighted combina-
tion of the average squared approximation error over ob-
served data and the roughness measure. For a number of

1Parts of this section borrow from contributions by the first author to
wikipedia.org.
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Figure 2: Interpolating Spline vs Smoothing Spline.

meaningful definitions of the roughness measure, the spline
functions are found to be finite dimensional in nature, which
is the primary reason for their utility in computations and
representation.

In common usage, the term ”spline” is often used to re-
fer to the restricted setting of one-dimensional polynomial
splines, where it refers to piece-wise polynomial functions.
Often the piece-wise polynomials are cubic and subject to
continuity and continuity of first derivative constraints at the
knots (piecewise boundaries) resulting in the common cu-
bic B-splines. Both interpolating and smoothing versions are
feasible, a comparison of these is shown in Figure 2. Note
that the example illustrates that in typical noisy data, the
smoothing version is often preferable.

4. THIN PLATE SPLINES

We now review the general theory of thin plate splines. Given
a set of n points {ti}

n
i=1 in R

d and a set of experimentally
measured values {vi}

n
i=1 at these locations, we would like to

determine a function g(t) that satisfies the dual requirements
of being close to the observed data points, while at the same
time being as smooth as possible. The problem may be for-
mulated as the minimization of the penalized sum of squares

Lm,d(g) =
n

∑
i=1

(g(ti)− vi)
2 +λJm(g) (1)

where λ > 0 and Jm(g) is a smoothness penalty in d di-
mensions on the function g() that is defined as a suitably
weighted sum of integrals of squares of all the mixed deriva-
tives of g() of (total) order m. Specifically, Jm(g) is mathe-
matically defined as

Jm(g) =
∫

Rd
∑

l1+···+ld=m
li integer,li≥0

m!
l1! · · · ld!

(

∂ mg

∂ t l1
1 · · ·∂ t ld

d

)2

dt(2)

For a set of non-negative integers, {li}n
i=1, we denote the

vector l = (l1, l2, . . . ld) and s(l) = l1 + · · ·+ ld . Then we can
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write a corresponding differential operator

Dl =
∂ s(l)

∂ t l1
1 · · ·∂ t ld

d

, (3)

which has a order s(l). Using this abbreviated notation the
smoothness penalty can be compactly written as

Jm(g) =

∫

Rd
∑

l:s(l)=m

(

m
l

)

| Dlg(t) |2 dt (4)

where
(m
l

)

denotes the multi-nomial coefficient m!
l1!···ld ! . In

this form, one can readily see that the the smoothness penalty
is similar in form to the norm for Sobolev spaces (see for
instance [19, pp. 281]) and is in fact [3] a semi-norm in the
Sobolev space Hm(Rn).

Duchon [3] and Meinguet [20] demonstrated that pro-
vided 2m > d and the points {ti}

n
i=1 satisfy reasonable con-

straints (described later), there is a unique function that min-
imizes Lm,d(g) in (1) given by

g(t) =
M

∑
j=1

a jφ j(t)+
n

∑
i=1

wiUm,d(‖ t− ti ‖) (5)

where M =
((m+d−1)

d

)

, {φ j}
M
j=1 are a set of polynomials span-

ning the M-dimensional space of polynomials in R
d of total

degree less than m, the function Um,d() is given by

Um,d(r)=

{

θm,d r2m−d ln(r) if 2m−d is an even integer
θm,d r2m−d otherwise

(6)
where

θm,d =







(−1)d/2+1+m

22m−1πd/2(m−1)!(m−d/2)!
if 2m−d is an even integer

Γ(d/2−m)

22mπd/2(m−1)!
otherwise

(7)
The coefficients a = [a1,a2, . . .aM] and w = [w1, . . .wn]

T

are uniquely specified by
[

E+λI T
T

T 0

][

w

a

]

=

[

v

0

]

(8)

where v = [v1, . . .vn], E is the n×n matrix whose i jth entry
Ei j = Um,d(‖ ti − t j ‖), and T is the M × n matrix whose
i jth entry Ti j = φi(t j). In order to use TPS the above system
of equations must be solved. Note that the system is a (n +
M)× (n + M) system of equations, which requires roughly
(n+M)3 computational operations for solution and (n+M)2

memory. Both these can grow quite rapidly as n increases.
The requirements can be slightly reduced slightly by using
the special structure of the system of equations in (8).

The smoothing parameter λ determines the trade-off be-
tween the least-squares term for fidelity to the measured data
and the smoothness penalty J(g). If some a priori knowledge
is available regarding the noise in the empirically observed
data, it may be used to estimate λ . Typically, however, such
information is not available and one has to determine the pa-
rameter from the data itself. Generalized cross-validation
methods [17, 18] are typically used to estimate an optimal
value of λ efficiently.

In order for the above result to hold, the points ti must
be distinct and sufficiently dispersed to determine a unique2

least-squares polynomial of total degree m−1.
A function of the form in (5) satisfying the constraint

Tw = 0 (note that this constraint is enforced in (8)) is called
a natural thin plate spline of order m. Note that the first
term in the expression in (5) corresponds to a global poly-
nomial term of total degree less than m and the second term
is formed by translates of the radial-basis functions Um,d().
Thus the thin-plate spline method is closely related to radial
basis function methods [21].

5. EXPERIMENTAL RESULTS

In order to quantify the performance of thin-plate spline in-
terpolation methods in color printer data interpolation appli-
cations we conducted experiments using a four colorant laser
color printer. For the experimental procedure, the data re-
quired for different approaches are obtained using a training
target. The performance of the method is then evaluated over
an independent test target. Spectral measurements are done
using a Gretag Macbeth Spectrolino device. The device re-
ports the data for the range 380-730 nm in 10 nm increments.
For the training set, the experiments utilized CMYK input
grids of sizes 17× 17× 17× 9, 9× 9× 9× 9, 5× 5× 5× 5,
and 3×3×3×3.

The test target consisted of an independent set of 16×
16×16×8 CMYK patches placed within a lattice in CMYK
space with random placement of each point within the cor-
responding lattice cell. The color values for the test set
were obtained from measurements of corresponding prints
and compared against the values obtained from interpolation.
The difference or “error” between corresponding patches was
calculated in ∆E∗

ab and ∆E∗
94 units. Color error statistics for

the thin plate spline interpolation technique in ∆E∗
ab and ∆E∗

94
metrics are summarized in Table 1 and 2, respectively. From
the numbers we see the expected trend that the errors reduce
with increasing number of points. For comparison, the num-
bers for comparable grid sizes using a local regression tech-
nique are also included. Note that the results are comparable
- however the smoothing parameter for local regression was
determined manually by trial and error so as (approximately)
to minimize the mean ∆E∗

ab error, whereas the smoothing pa-
rameters for the thin plate spline interpolation was obtained
automatically. We also note that for reasonable measurement
grid sizes of 5×5××5×5, the mean errors in interpolation
are small enough to be reasonable for several applications.

6. DISCUSSION AND CONCLUSION

In this paper we presented an overview of thin plate splines
and studied the performance of this smoothing interpolation
method for interpolation of the forward device response for
a laser color printer. We demonstrated that the method can
offer fairly accurate results when sufficient data points are

2Consider the M monic monomials with total degree less than m, i.e.,
terms of the type t l1

1 · · · t ld
d , where each li is a non-negative integer and the

total order l1 + · · ·+ ld < m. At each point ti, an M × 1 vector may be
formed by evaluating each of these terms in a specific order. If the M × n
matrix formed by the concatenation of each of these vectors corresponding
to the n points has a rank equal to M, then for any set of values {vi}

n
i=1 there

is a unique polynomial p(x) with total degree ≤ (m − 1) that minimizes
∑n

i=1(p(x)− vi)
2. Note that a direct implication is that the method requires

n > M points.
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Method Data Grid Mean Standard Deviation 95 percentile Maximum

Thin Plate Spline
9×9×9×9 1.4893 1.9064 3.3378 25.5749
5×5×5×5 1.8042 1.9520 4.2092 25.4651
3×3×3×3 4.4604 2.8103 9.7720 24.7110

Local Regression
9×9×9×9 1.6188 1.9249 3.7884 24.9900
5×5×5×5 1.9945 2.1007 4.7518 25.3187
3×3×3×3 3.5649 2.4666 8.1184 27.3989

Table 1: Color error statistics (in ∆E∗
ab units)for different empirical interpolation methods as a function of grid size

Method Data Grid Mean Standard Deviation 95 percentile Maximum

Thin Plate Spline
9×9×9×9 1.1076 1.1909 2.5557 15.9328
5×5×5×5 1.3151 1.2048 2.9980 15.9055
3×3×3×3 3.1351 1.8669 6.8912 21.8168

Local Regression
9×9×9×9 1.1827 1.1963 2.7190 15.7596
5×5×5×5 1.4452 1.2911 3.2806 15.5316
3×3×3×3 2.5128 1.5648 5.4841 17.5934

Table 2: Color error statistics (in ∆E94 units)for different empirical interpolation methods as a function of grid size

utilized. One dimensional examples illustrated the benefit of
the technique in smoothing noise in the measured data.

An open problem of some interest in splines is the op-
timal placement of spline knots. In our present work, this
aspect was not addressed. Suitable placement of the knots
can, however, significantly improve the accuracy of the in-
terpolation methods and is therefore worthy of independent
investigation. In future work, we will explore how the knowl-
edge of the printer characteristics may be exploited for this
purpose.
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