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ABSTRACT

In this paper a new method called Teager-Huang Transform
(THT) for analysis of nonstationary signals is introduced.
The THT estimates the Instantaneous frequency (IF) and
the Instantaneous amplitude (IA) of a signal. The method
is based on the Empirical mode decomposition (EMD) al-
gorithm of Huanget al. [1] and the Teager energy operator
(TEO) [2]. Both EMD and TEO deal with non-stationary
signals [1],[3]. The signal is first band pass filtered using
the EMD into zero-mean AM-FM components called Intrin-
sic mode functions (IMFs) with well defined IF. Then TEO
tracks the modulation energy of each IMF and estimates the
corresponding IF and IA. The final presentation of the IF
and the IA results is an energy Time frequency represen-
tation (TFR) of the signal. Based on the EMD, the THT
is flexible enough to analyze any data (linear or nonlinear)
and stationary or nonstationary signals. Furthermore, the
THT is free of interferences. To show the effectiveness of
the THT, TFRs of five synthetic signals are presented and
results compared to those of the Hilbert-Huang transform
(HHT) [1], the spectrogram, the Smoothed pseudo Wigner-
Ville distribution (SPWVD), the scalogram and the Choi-
Williams distribution (CWD).

1. INTRODUCTION

Time-frequency (TF) analysis is an effective tool for analyz-
ing nonstationary signals, i.e., signals whose spectral con-
tents vary with time [4]. In many areas such as in seismic,
radar, sonar, telecommunications and biomedicine signals
under consideration are known to be nonstationary. An im-
portant feature of nonstationary signal is provided by its IF,
which accounts for the spectral variations as a function of
time [4]. A good way to define the local characteristics of
nonstationary signal is its IF. In TF analysis, we analyze
the frequency content a cross a small span of time and then
move to another time position [5]. The major drawback of
most TF transforms is that the rectangular tiling of TF plane
does not match the shape of all signals [1]. On the other
hand, basis decomposition methods such as the Fourier de-
composition or the wavelet decomposition have been used
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to analyze real signals. The main drawback of these ap-
proaches is that the basis functions are fixed, and do not
necessarily match varying nature of signals. The IF of an
analytic signal is commonly defined as the first derivative
of the phase of this signal. Quantitatively, the IF is a time
varying parameter which corresponds to the frequency of a
sinusoid that locally (in time) fits the signal under analysis.
The IF if blindly applied to any analytic signal, may result
in few paradoxes such as [7]: (1) the IF may not be one of
this frequencies in the Fourier spectrum, (2) the IF may go
outside the band for a band limited signal. The signal that is
symmetric with respect to the local zero mean and has the
same number of zero crossings and extrema gives a mean-
ingful IF [1]. Recently, Huanget al. [1] have proposed a
class a functions (oscillating components) called Intrinsic
mode functions (IMFs). To compute the frequency behav-
ior of each IMF in time, the IF is estimated. A standard
approach to this problem is to use the Hilbert transform
(HT) and the related Gabors analytic signal [4]. An alter-
native approach developed by Maragoset al. [2] uses an
energy-tracking operator, Teager energy operator (TEO), to
first estimate the energy required for generating an AM-FM
signal and then separate it into its IF and IA components.
Note that the HT approach mainly involves a linear integral
operator, where as the TEO approach uses a non-linear dif-
ferential operator. TEO gives a good estimate of IF and has
low computational complexity. In the presented work, the
EMD is used in conjunction with the TEO to estimate the IF
and the IA of a given signal and to generate a full enegry-
frequency-time distribution of this signal. This distribution
is free of interferences.

2. EMD ALGORITHM

The principle of the EMD is to decompose adaptively a
given signal into IMFs extracted from the signal by means
of the sifting algorithm. The name IMF is adapted because
it represents the oscillation mode embedded in the data.
With this definition, the IMF in each cycle, defined by the
zero crossings of, involves only one mode of oscillation, no
complex riding waves are allowed. Thus, an IMF is not
restricted to a narrow band signal, and it can be both ampli-
tude and frequency modulated. In fact, it can be nonstation-
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ary. The essence of the EMD is to identify the IMF by char-
acteristic time scales, which can be defined locally by the
time lapse between two extrema of an oscillatory mode or
by the time lapse between two zero crossings of such mode.
The EMD picks out the highest frequency oscillation that re-
mains in the signal. Thus, locally, each IMF contains lower
frequency oscillations than the one extracted just before.
Furthermore, the EMD does not use any pre-determined fil-
ter or wavelet function. It is fully data driven method. It has
been shown experimentally that the EMD acts essentially
as dyadic filter bank resembling those involved in wavelet
decomposition [6]. Since the decomposition of the EMD is
based on the local characteristics time scale of the data, it
is applicable to nonlinear and nonstationary processes. The
EMD decomposes into a sum of IMFs that : (R1) have the
same numbers of zero crossings and extrema; and (R2) are
symmetric with respect to the local mean. The First con-
dition is similar to the narrow-band requirement for a sta-
tionary Gaussian process. The second condition modifies a
global requirement to a local one, and is necessary to ensure
that the IF will not have unwanted fluctuations as induced
by a symmetric waveforms [1]. Both conditions satisfy the
physically necessary conditions, IMFs, are obtained using
the sifting algorithm involving the following steps :

Step 1) Fix ǫ, j ← 1 (jth IMF)
Step 2) rj−1(t)← x(t) (residual)
Step 3) Extract the (jth IMF) :
(a) hj,i−1(t)← rj−1(t), i← 1 (i number of sifts)
(b) Extract local maxima/minima ofhj,i−1(t)
(c) Compute upper envelope and lower envelope

functionsUj,i−1(t) andLj,i−1(t) by interpolating,
using cubic spline, respectively local maxima and
minima ofhj,i−1(t)

(d) Compute the envelopes mean :
µj,i−1(t)← (Uj,i−1(t) + Lj,i−1(t))/2

(e) Update:hj,i(t)← hj,i−1(t)− µj,i−1(t), i← i + 1
(f) Calculate stopping criterion :

SD(i) =
T

∑

t=0

| hj,i−1(t)− hj,i(t) |
2

(hj,i−1(t))2

(g) Decision : Repeat Step (b)-(f) untilSD(i) < ǫ
and then putIMFj(t)← hj,i(t) (jth IMF)

Step 4) Update residual :rj(t)← rj−1(t)− IMFj(t)
Step 5) Repeat Step 3 withj ← j + 1 until the number

of extrema inrj(t) < 2.

whereT is the time duration of the signal. The sifting is
repeated several times (i) in order to geth to be a true
IMF that fulfills the requirements (R1) and (R2). The re-
sult of the sifting procedure is thatx(t) will be decom-
posed intoIMFj(t), j = 1, . . . N and residualrN (t), i.e.,

x(t) =

N
∑

j=1

IMFj(t) + rN (t). To guarantee that the IMF

components retain enough physical sens of both amplitude

and frequency modulations, a criterion for the sifting to stop
is used. This accomplished by limiting the size of the stan-
dard deviationSD computed from the two consecutive sift-
ing results. Usually,SD is set between0.2 to 0.3 [1].

3. TEAGER ENERGY OPERATOR

It is shown that the TEO can track the energy and identify
the IF and the IA of a signal [2]. The TEO,Ψ[.], is defined
for continuous-time signalx(t) as :

Ψ[x(t)] = [ẋ(t)]2 − x(t)ẍ(t) ; (1)

whereẋ(t) andẍ(t) are the first and the second time deriva-
tives of x(t) respectively. In the discrete case, the time
derivatives may be approximated by time differences. The
discrete-time counterpart of TEO becomes [2] :

Ψ(x[n]) = x2[n]− x[n + 1] · x[n− 1] (2)

An important aspect of TEO is that it is nearly instanta-
neous. This is because only three samples are required for
the energy computation at each time instant. This excellent
time resolution provides us with ability to capture the en-
ergy fluctuations. Furthermore, this operator is very easy
to implement efficiently. The Energy separation algorithm
(ESA) developed par Maragoset al. [2] uses the TEO to
separatex(t) into its amplitude envelope| a(t) | and IF
signalf(t) to accomplish monocomponent AM-FM signal
demodulation :

f(t) ≈
1

2π

√

Ψ[ẋ(t)]

Ψ[x(t)]
| a(t) |≈

Ψ[x(t)]
√

Ψ[ẋ(t)]
; (3)

Since the speech signal is composed of superposition of
AM-FM signals, TEO has been successfully used in vari-
ous speech processing applications [2]. The ESA is very
simple demodulating technique for AM-FM demodulation.
It is less computationally complex and has better time res-
olution than other classical demodulation approaches such
as the HT [7]. The main disadvantage is of this operator
is its sensitivity in very noise environment. Furthermore,it
assumes that the estimated IF does not vary too fast (small
bandwidths) or too greatly compared with the carrier fre-
quency.

4. TEAGER-HUANG TRANSFORM: THT

The EMD is not a TFR as the WVD. With the HT, the IMF
yields IFs as function of time that give sharp identifications
of embedded structures. The final presentation of the re-
sults is an energy TFR, designated as Hilbert-Huang trans-
form (HHT) [1]. In this work, to estimate the IF and the
IA of x(t), the EMD is combined with the TEO, which is
typically applied to a bandpass signal. Ifx(t) is a multicom-
ponent AM-FM signal, then bandpass filtering is needed to
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isolate each component before applying the ESA. Thus, the
EMD is used as a multiband filtering to separate the sig-
nal components in the temporal domain and hence reduce
multicomponent demodulation to multicomponent one. The
conjunction of the EMD and the TEO methods is designated
as Teager-Huang Transform (THT). The final presentation
of the the IF and the IA results is an energy TFR. The THT
method, whose block diagram is shown in Figure 1, can be
divided into two tasks; separation of the signal into IMFs
using the EMD, and demodulation of the separated compo-
nents (IMFs) into IF and IA information signals for each
component using the ESA.

Fig. 1. Block diagram of the THT

5. RESULTS

The THT is illustrated by five test signals with IF laws shown
in figure 2. The first signal,s1(t), consists of four lines in
the TF domain (Fig. 2(a)): two LFM and two tones. The
TFRs of the spectrogram, the SPWVD, the CWD, the scalo-
gram, the HHT and the THT are shown in figure 3. Even if
the spectrogram, the SPWVD, the CWD and the scalogram
identify the four components (Figs. 3(a)-(d)), the signal
component localization is coarse. The best result is given by
the HHT and the THT (Figs. 3(e)-(f)): the four components
are well identified and are much better localized, leading to
nearly ideal TFR. Note that the second tone is more resolved
in frequency by the THT than by the HHT. The second sig-
nal, s2(t), is composed of two hyperbolic FM signals (Fig.
1(b)). The TFRs of the SPWVD, the scalogram, the HHT
and the THT are shown in figure 4. The four TFRs identify
the two frequency components. In spite of the smoothing
operation, the SPWVD shows cross-terms along the mean
of the two hyperbola (Fig. 4(a)) and with loss of resolu-
tion well visible in time betweent = 850 and t = 900
and in frequency betweenν = 0.12 andν = 0.5 for first
hyperbola and betweenν = 0.3 andν = 0.5 for second
hyperbola. The scalogram presents some interferences be-
tween the hyperbola and fort > 600 the two hyperbola are
not separated. Comparing the THT and the HHT against
the SPWVD and the scalogram, we see that in the THT
and the HHT the two components are well localized with
no cross-terms. For second hyperbola there is no loss of

TF resolution. For first hyperbola there is loss of TF res-
olution betweenν = 0.24 andν = 0.5. The third signal,
s3(t), is composed of a linear and hyperbolic FM signals,
and two Gaussian atoms located at (t = 425, ν = 0.05) and
(t = 800, ν = 0.15) respectively (Fig. 2(c)). The TFRs
of the SPWVD, the scalogram, the HHT and the THT are
shown in figure 5. The SPWVD and the scalogram iden-
tify the four IF laws but the signal components localiza-
tion is coarse. Note that the spread in frequency is more
important for the scalogram than for the SPWD. The HHT
shows also spread in frquency forν > 0.15. For the THT
the TF structures are clearly visible and highly concentrated
with narrow spread in frequency. The fouth signal,s4(t),
consists of five nonoverlapping tones of finite duration and
a sinusoidal FM (Fig. 2(d)). The TFRs of the SPWVD,
the scalogram, the HHT and the THT are shown in figure
6. With the THT both the tones and the sinusoidal FM are
much better identified and localized (Fig. 6(d)) than the re-
maining TFRs. Note the spread in frequency, for the tones,
in the HHT, the SPWD and the scalogram. For the SPWVD
and the scalogram the transitions between tones are smooth
(Figs. 6(a)-(b)). The fifth signal,s5(t), consists of a Dirac
impulse, two tones and a LFM of finite durations (Fig. 2(e)).
The TFRs of the SPWVD, the scalogram, the HHT and the
THT are shown in figure 7. This figure shows that the THT
gives the best result (Fig. 7(d)). The representations of the
SPWVD and the scalogram are hardly readable with loss in
frequency resolution and particularly for the SPWVD where
cross-terms are superposed on the the signal components.
For t > 100, we note a spread in frequency in the HHT.

6. CONCLUSION

In this paper a new full energy-frequency-time distribution
of a signal called THT is proposed. This distribution free
of interferences is designed for processing any data (linear
or nonlinear) and stationary or nonstationary signals. The
THT is illustrated by five synthetic signals with different
IF laws and the results compared to those of well known
TFRs. These results show that the THT identifies in all pre-
sented cases the TF structures. Furthermore, THT presents
no cross-terms and few loss of TF resolution. The THT is
very easy to implement. As future work we plan to study the
THT in noisy environment and also the effects of the sam-
pling and the interpolation, used by the EMD, on quality
(resolution, concentration,...) of the generated TFRs.
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Fig. 2. Ideal TFRs of five test signals.
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Fig. 3. Signals1(t)
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Fig. 4. Signals2(t)
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Fig. 5. Signals3(t)
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Fig. 6. Signals4(t)

N
o

rm
a

li
z
e

d
 f

re
q

u
e

n
c
y

Time

Smoothed Pseudo Wigner−Ville

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10

20

30

40

50

60

(a) SPWVD. (b) Scalogram.

THH

Time

N
o

rm
a

li
z
e

d
 f

re
q

u
e

n
c
y

50 100 150 200 250

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10

20

30

40

50

60

(c) HHT.

THT

Time

N
o

rm
a

li
z
e

d
 f

re
q

u
e

n
c
y

50 100 150 200 250

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10

20

30

40

50

60

(d) THT.

Fig. 7. Signals5(t)
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