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ABSTRACT

We have investigated two different strategies to improve the
quality of ISAR images corrupted by Gaussian noise. The
images are generated using a Time Frequency technique
known as Atomic Decomposition (AD). The first strategy is
a classical denoising technique based on an AD detector de-
veloped for signal detection in noise. The second technique
separates the atoms extracted through AD by their param-
eters in two classes: atoms coming from noise and atoms
coming from signal components. Compared to the first one,
the second technique requires a greater knowledge about the
signal components.

1. INTRODUCTION

Joint time-frequency analysis is a powerful tool with appli-
cations in signal analysis, detection and estimation [1]-[4]. It
pursues the meaningful representation of signals in both the
time and frequency domains in order to reveal their spectral
behavior along the time.

Among the wide variety of time-frequency representa-
tions, Atomic Decomposition (AD) [5, 6], also known as
Matching Pursuit [2, 7], Adaptive Gabor Representation [3]
or Adaptive Chirplet Transform [8], has attracted consider-
able attention over the last decade, as it offers new possibili-

ties in different areas related to radar.1

We have already explored the possibilities of AD in sig-
nal interception applications [11, 12], where sensitivity is
crucial. It has been shown that AD presents better sensitiv-
ity than other approaches if an appropriate dictionary is used,
e.g., the chirplet family when detecting chirped signals [11].
Moreover, AD also provides a meaningful representation of
signals which becomes very useful for recognizing the signal
modulation [11].

Apart from interception, there are other radar-related
applications where AD is used. For instance, AD is
used in SAR/ISAR imaging in order to obtain focused
and denoised images, as well as for extracting target
features [9, 10, 13, 14, 15]. In these applications the sensitiv-
ity is not the limiting requirement but the quality of the image
and computational burden.

This paper analyses the characteristics of the AD-based
ISAR images and the denoising capabilities offered by AD.
The denoising of ISAR images is not a very common topic
in the literature. Nevertheless, readers can found in [21] an
interesting denoising algorithm based on basis pursuit [2],
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1In the radar literature, Atomic Decomposition has been termed in differ-
ent manners, such as Adaptive Joint Time-Frequency Algorithm [9], Adap-
tive Wavelet Transform [10].

while our algorithm is based on a detection approach. Since
that algorithm decomposes the signal as a sum of complex
sinusoids, the observation time must be short in order to min-
imise blurring effects of acceleration. Decomposing the sig-
nal into chirplets allows longer coherent integration times,
which is necessary to improve the sensitivity.

2. THE ATOMIC DECOMPOSITION TECHNIQUE

2.1 Theoretical Overview

The aim of AD is to represent the signal (vector) under anal-
ysis, x, as the weighted sum of a set of elementary functions
named atoms:

x = ∑
p

b̂p hγ̂p
. (1)

These atoms are estimated through an iterative procedure
maximizing, at each iteration, the inner product of a resid-
ual signal and the atoms of the dictionary [3],[5]-[7]:

γ̂p = arg max
γ

∣∣hH
γ xp−1

∣∣2
, (2)

b̂p = h
H
γ xp−1 , (3)

where the superscript H indicates complex conjugate trans-
position and xp denotes the residual signal after the p-th it-
eration. This residual signal is updated for the next iteration
by substracting its orthogonal projection onto the estimated
atom:

xp =

{
xp−1 − b̂p hγ̂p

p = 1,2, . . . ,

x p = 0 .
(4)

Due to the sequential character of the estimation of the
atoms, AD is a greedy algorithm. As a result, AD can es-
timate more energetic atoms than any of the signal compo-
nents when these components are close in the time-frequency
domain [2, 11]. Greediness reduces the time-frequency reso-
lution but it can represent an advantage for interception pur-
poses.

2.2 The Chirplet Dictionary

Chirplets are Gaussian-envelope functions with linear fre-
quency modulation. They model many radar signals, es-
pecially those coming from low probability of intercep-
tion radars [16, 17]. Chirplets also exhibit optimum time-
frequency concentration [4] (in the sense that they accom-
plish the generalized uncertainty principle). This leads to
time-frequency representations with more physical meaning.
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Regarding ISAR imaging, chirplets are often used to repre-
sent the echoes from manoeuvring targets or with complex
movement [8, 15].

Each chirplet is defined by a 4-parameter vector

γ = [α,β ,T, f ]T as follows:

hγ(n) =
(α

π

)1/4

e−
α
2 (n−T)2+ j[2π f (n−T)+πβ (n−T)2] . (5)

The parameter vector γ has a clear physical meaning: T is the
mean time, f is the mean frequency and β is the chirp rate
of the linear frequency modulation. α is inversely related
to the effective duration of the chirplet, d, according to the
expression d =

√
2/α [3].

2.3 AD Implementations

AD estimates each atom of the expansion by means of an
optimization procedure, as shown in Eq. (2). The objective
function in this equation can present numerous local max-
ima and extensive plane regions. For this reason, differ-
ent AD implementations have been proposed in the litera-
ture [5, 6, 11, 18]. The common approach consists of finding
out a coarse solution by a global search, and then refining this
solution through a local search in a reduced region around the
coarse solution. However, the performance of AD is highly
dependent on the implementation used, and not all the AD
implementations are suitable for ISAR imaging [19].

In this work, we use the implementation referred to as
TFAD2 [19]. TFAD2 is an enhanced version of the TFAD
algorithm [6, 20] which incorporates several modifications
with the aim of improving the TFAD performance for long
duration or high chirp rate atoms. TFAD and TFAD2 are effi-
cient methods optimized for chirplet dictionaries, contrary to
others AD algorithms (ESAD [5], GAAD [11]) which solve
Eq. (2) for any possible dictionary. When using TFAD2, each
of the parameters of the chirplet is estimated by maximizing
different objective functions.

In our simulations, the input parameters of TFAD2 are:
the chirp rate sampling, M1, is fixed to the number of sam-
ples, i.e. the number of successive pulses, and the sampling
of α is fixed to M2 = 64. These TFAD2 settings provide
an acceptable trade-off between accuracy and computational
burden.

3. DENOISING BY AD

3.1 The detection strategy

In order to obtain an ISAR image through AD, the signal ex-
pansion of (1) has to be computed for each range cell. For
this reason, a stopping criterion is used to avoid long pro-
cessing times. Thus, the expansion finishes if any of these
two conditions are satisfied:

1. 50 atoms has been estimated.

2. The residual signal energy is less than 1 per cent of the
input signal energy.

Note that the mere stopping criterion performs a denoising
in the ISAR image, unless the signal can be approximated
by less than 50 atoms and the energy of all the signal com-
ponents are greater than 1 per cent of the total signal energy
(which is very unlikely when signals are corrupted by noise).
Also note that the first condition allows to control the maxi-
mum processing time.

However, the effectiveness of the detection strategy (and
therefore, its name) is attained when the final expansion,
equation 1, is constructed with the extracted atoms which
surpass the detection test:

|b̂p|
2

σ̂p
2

H1

≷
H0

Th , (6)

where the null hypothesis, H0, is that the signal consists of
only noise and the alternate hypothesis, H1, is that the signal

consists of one atom plus noise. b̂p is the estimated coeffi-

cient of the p-extracted atom, and σ̂p
2

is an estimate of the
noise power:

σ̂p
2
=

‖xp‖
2

N
, (7)

where N is the number of samples of the signal, x.
The detection test allows to control the false alarm prob-

ability for the image. In our case, we set the false alarm
probability to PFA = 10−3 for each extracted atom. Once all
the atoms are estimated, we use the Adaptive Spectrogram
(AS) [3] as the time-frequency (dwell time vs Doppler fre-
quency) representation for each range cell. Finally, all the
time-frequency representations are rearranged in order to ob-
tain the sequence of ISAR images through the dwell time [3].

3.2 The classification strategy

This denoising technique is based on the physical meaning
of the chirplets parameters. Basically, it consists of separat-
ing in the parameter space the noise components from the
signal components. Then, when the fluctuation of the target
velocity is moderately smooth, chirplets are expected to ex-
hibit low chirp rate magnitude (β ). Therefore, atoms with
a chirp rate magnitude greater than a given value, are not
considered for the signal expansion. Also, the classification
strategy is a powerful tool for separating the rotating parts of
a target from the main body [15]. In our development, we
consider the Doppler range of the target to be unknown, and
therefore, the mean frequency of the chirplets cannot be used
to discriminate atoms coming from noise. The weak point
of this technique is the difficulty to determine an appropriate
threshold for the chirp rate, due to non-perfect motion com-
pensation and/or insufficient signal knowledge.

4. RESULTS

4.1 Simulated data

Firstly, we consider the case of a simulated tar-
get. The data can be obtained at the web site
http://airborne.nrl.navy.mil/∼vchen/data by courtesy of Dr.
V.C. Chen of Naval Research Laboratory. The data corre-
spond to a B-727 airplane and have been simulated for a
stepped frequency radar operating at 9 GHz and with a band-
width of 150 MHz. For each pulse, 64 complex range sam-
ples were saved. The file contains 256 successive pulses.
The Pulse Repetition Frequency (PRF) is 20KHz. Motion
compensation and range processing have been applied to the
data. However, the fluctuation in velocity has not been com-
pensated. Contrary to an FFT-based ISAR image, AD-based
ISAR images are not affected by the target fluctuations in
velocity, since chirplets can model these fluctuations. As a
reference, the ISAR image obtained by AD is plotted in Fig-
ure 1. This image, and all that will be shown, correspond
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Figure 1: ISAR image for simulated B-727 data and high
SNR.

to the 64th pulse within the temporal sequence of ISAR im-
ages obtained by AD. The SNR for these data is high, and
therefore, the image is not corrupted by noise even when no
denoising technique has been used.

In order to evaluate the different denoising strategies, an
additive complex white Gaussian noise, with zero mean and
variance σ2, has been added to the data for simulating differ-
ent SNR. We define the SNR as follows:

SNR =
∑R

r=1 ∑P
p=1 |X(r, p)|2

R P σ2
(8)

where R is the number of range samples, P is the number of
successive pulses and X(r, p) is the complex data for the r-th
range and p-th pulse. The SNR represents the ratio between
the mean power of the collected data and the power of the
additive noise.

In Figure 2 they are represented the ISAR images ob-
tained by AD with different denoising techniques and for
different SNR. In each row, the same denoising technique
has been used, and the SNR varies. Thus, the first row cor-
responds to the case when no denoising technique is used.
The second represents the case of using the detection strat-
egy where the probability of false alarm per atom is set to
PFA = 10−3. The third row is the same but setting PFA =
10−1. Finally, the last row corresponds to the case when the
classification strategy is used (chirp rate discrimination) in
combination with the AD detector (PFA = 10−1). In each col-
umn, the images correspond to the same SNR and different
denoising techniques.

As can be seen, for SNR=0 dB (first column), the im-
ages obtained has been nearly not corrupted by noise, even
when no denoising technique has been used. However, for
lower SNR it is necessary to use a denoising strategy since
otherwise the images are highly corrupted by noise. In the
second row, the detection strategy is very effective for all the
SNR considered when PFA = 10−3, and no false alarms can
be seen in the images. However, some signal components
are missed as the SNR decreases, and only the most pow-
erful components can be appreciated for SNR= −10 dB. In
the third row, when only the detection technique is used but
setting PFA = 10−1, there is many more false alarms than for
PFA = 10−3. On the other hand, a lesser number of signal
components are missed when PFA = 10−1. Thus, the aim
of using the classification strategy in combination with the

detector is to clean the ISAR image from the false alarms ob-
tained with a high PFA while keeping the weak signal com-
ponents in the image. This objective is only attained in part
since although all the signal components are preserved, not
all the false alarms has been wiped out.

Finally, it has been said that the classification strategy
separates signal components from noise components by us-
ing the chirp rate parameter. Figure 3 serves to explain the
motivation of this strategy. In continuous trace, it is plotted
the simulated probability density function (100.000 trials) of
the chirp rate magnitude of chirplets estimated by AD when
there is only noise at the input. The dashed line corresponds
to the histogram of the chirp rate magnitude for the B-727
simulated data, in the absence of additive noise. It can be ap-
preciated that all the signal components exhibit a chirp rate
magnitude lesser than the value 2 ·10−3 (marked with a dot-
ted vertical trace), which is the threshold used by the classi-
fication technique in Figure 2 and allows to clean the image
from all the noise components exhibiting a greater chirp rate
magnitude. Note that the probability of false alarm will de-
pend on the target and its movement.

5. REAL LIFE DATA

The purpose of this section is to evaluate the AD-based de-
noising techniques for real life data. In this case, 128 com-
plex range samples were saved for each pulse and the data
comprises 128 successive pulses. The rest of parameters re-
main equal to the previous case.

Figure 4 shows the ISAR images obtained by AD for
these real data, when no denoising technique is used (a) and
when the detector is used with PFA = 10−3. It can be seen
that the SNR is relatively high, since the number of false
alarms in the image obtained with no denoising is small. As
with simulated data, it can be seen that the use of the detec-
tor cleans the image from false alarms near completely. In
case of using the FFT to obtain the ISAR image Figure 4(c),
the noise covers the whole image and the use of a threshold is
mandatory. For instance, the image can be represented by us-
ing a color scale for the image intensity. In our case, we have
represented in Figure 4(d) only the image points exceeding a
given threshold. This threshold is set to attain a PFA = 10−3

per pixel (contrary to AD, where the PFA is defined per atom).
It is noteworthy that the analysis of the sequence of images
obtained by AD shows that the fluctuations in velocity are
negligible (the chirp rate of the atoms is near zero). In such a
case (complete movement compensation), the FFT is the best
processing algorithm since it becomes the matched filter of
the signal echoes.

6. CONCLUSION

AD has an increasing use in areas such as signal detection
and radar image processing (ISAR). We proposed to use AD
not only as an algorithm to generate the ISAR image but
also as a processing tool to improve the quality of the im-
age by denoising. Different denoising techniques has been
proposed, resulting the use of a detector as the most suitable
a priori since it allows to fix the probability of false alarm
per atom and does not require a previous knowledge of the
signal.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



SNR = 0 dB

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a)

SNR = -5 dB

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b)

SNR = -10 dB

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(d)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(e)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(f)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(g)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(h)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(i)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(j)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(k)

Range cell

N
o
rm

a
liz

e
d
 D

o
p
p
le

r

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(l)

Figure 2: ISAR images for simulated B-727 data. SNR indicated at the top. (a)-(c) No denoising. (d)-(f) Detector is used with
PFA = 10−3. (g)-(i) Detector is used with PFA = 10−1. (j)-(l) Detector is used with PFA = 10−1 and classification using the
chirp rate.
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Figure 3: Representation of the chirp rate classifier.
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Figure 4: ISAR images for real B-727 data. (a) AD with no
denoising. (b) AD using the detector and PFA = 10−3. (c)
FFT with no detector. (d) FFT using a threshold to attain
PFA = 10−3.
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