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ABSTRACT

Channel estimation/symbol detection methods based on su-
perimposed training (ST) are known to be more bandwidth ef-
ficient than those based on traditional time-multiplexed train-
ing. In this paper we present an iterative version of the ST
method where the equalised symbols obtained via ST are used
in a second step to improve the channel estimation, approach-
ing the performance of the more recent (and improved) data
dependent ST (DDST), but now with less complexity. This
iterative ST method (IST) is then compared to a different it-
erative superimposed training method of Meng and Tugnait
(LSST). We show via simulations that the BER of our IST al-
gorithm is very close to that of the LSST but with a reduced
computational burden of the order of the channel length. Fur-
thermore, if the LSST iterative approach (originally basedon
ST) is now implemented using DDST, a faster convergence
rate can be achieved for the MSE of the channel estimates.

1. INTRODUCTION

Digital communication systems require an estimate of the chan-
nel prior to equalisation. Channel estimation techniques fall
into three main categories: blind, semi-blind and trained.In
this work we mainly focus on the last category because of
its simplicity and satisfactory performance. Normally, the
training sequence used for channel estimation is allocatedan
empty time slot in the transmitted frame, thus wasting band-
width. This drawback was overcome when the training se-
quence was instead added to the data in what is now called
superimposed training (ST) [1, 2]. But since training and in-
formation are sent at the same time, from the channel estima-
tion point of view, the information interferes with the train-
ing and effectively acts as unwanted noise. Later, in [3], a
modified ST known as data-dependent ST (DDST) was able
to make the information sequence transparent to the training
sequence, thus removing the “information noise” and hence
significantly improving channel estimation. In this paper we
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present a similar way of alleviating — but not fully cancelling
as DDST achieves— the effects of the information data noise
in ST. This is done in an iterative manner, where the equalised
symbols obtained through traditional ST in a first step are fed
back to the ST algorithm so that the information noise can
be reduced, and hence better channel estimation and symbol
detection is obtained, which in turn can be used in the next
iteration. The cancellation of information noise will onlybe
perfect when accurate equalisation is achieved (i.e. long data
records and high SNR). In this situation the iterative ST (IST)
will aproach the performance of DDST. The novelty of this
IST approach is that by re-using the ST equalised symbols
again in the ST algorithm, we get DDST performance, but
as we will see later, with relatively little additional computa-
tional burden.

An alternative iterative approach, is notto re-use the equal-
ised symbols in the actual ST algorithm as we have just pro-
posed, but to re-use these symbols for a traditional least squares
channel estimate of a fully trained system. This least squares
ST (LSST) approach is not new, and has previously been used
in [4]. The great disadvantage of LSST is its large computa-
tional complexity when compared with the proposed IST al-
gorithm.

Now, given that both iterative procedures (the new IST
and the already existing LSST) discussed here feed back the
equalised symbols obtained with ST, a better performance is
expected if DDST is employed instead of ST. But an iterative
DDST, in the fashion of IST, will not provide better channel
estimates than DDST since DDST already removes the in-
formation noise —which is the desired effect of IST. On the
other hand, a least squares DDST instead of ST is expected
to approach the behaviour of fully trained estimation quicker
than the LSST method in [4]. So the objectives of this paper
are then:

i) To develop a new low complexity iterative ST (IST) and
show that its performance approaches that of DDST.

ii) To develop the iterative method using least squares for
DDST (i.e., LSDDST) and to compare its performance
with LSST (as proposed in [4]).

iii) To compare via simulations the channel estimate MSE
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and BER after equalisation for the new algorithms of
IST and LSDDST along with the existing LSST of [4].

2. ITERATIVE ST (IST) AND LEAST SQUARES
DDST (LSDDST)

We start with a brief overview of DD(ST).

2.1. A review of (data dependent) superimposed training

Consider a baseband equivalent digital communications sys-
tem within the ST/DDST scenario, where a periodic train-
ing sequencec(k) of lengthN and periodP is added to the
information bearing symbolsb(k) before transmission over
an FIR channel{h(k)}M−1

k=0 contaminated by additive, white,
Gaussian noise,n(k). In addition, for DDST a periodic (pe-
riodP ) data-dependent sequencee(k) = − 1

NP

∑

NP −1
i=0 b(iP+

k), k = 0, 1, . . . , P − 1 andNP = N

P
, is also included at the

transmitter [3]. Note that for ST,e(k) = 0. Then in general,

x(k) =

M−1
∑

m=0

h(m)b(k − m) +

M−1
∑

m=0

h(m)e(k − m)+

+

M−1
∑

m=0

h(m)c(k − m) + n(k) + d

(1)

where k = 0, 1, . . . , N − 1. In matrix form:

Sh + n + d = x (2)

with s(k) = b(k) + c(k) + e(k). Note thatS is theN ×
M data matrix. We will assume that all terms in (2) can be
complex; thatb(k) andn(k) are from independent, identically
distributed (i.i.d.) random zero-mean processes, with powers
σ2

b
andσ2

n respectively; thatc(k) is known with powerσ2
c =

1
P

∑P−1
k=0 |c(k)|2; andd is an unknown DC-offset (see [1, 2]

for explanation regardingd). The problem is first to estimate
{h(k)}M−1

k=0 from theN received samples ofx(k), and then
via equalisation to estimate the transmitted datab(k). As the
method described in [5] can easily be modified to include the
iterative process to be described (and this will be shown in
a later paper), we will assume for simplicity of presentation
that perfect synchronisation and knowledge of the DC-offset
are provided. So we can, in what follows, setd = 0 and
P = M . Note thatP > M is only required if the DC-offset
and/or the synchronisation have to be estimated [5].

Now as in [2] we can write

ŷ(j) =
1

NP

NP−1
∑

i=0

x(iP + j) (3)

with j = 0, 1, . . . , P − 1, whereŷ(j) is an estimate of the
periodic (periodP ) cyclic meany(j) ≡ E{x(iP + j)}. So

from (1) and (3) we can easily show that

ŷ(j) =
M−1
∑

m=0

h(m)b̃(j − m) +
M−1
∑

m=0

h(m)e(j − m)+

+

M−1
∑

m=0

h(m)c(j − m) + ñ(j)

(4)

with j = 0, 1, . . . , P − 1, where

b̃(k) =
1

NP

NP−1
∑

i=0

b(iP + k) (5)

with k = 1 − P, 2 − P, . . . , P − 1, and

ñ(j) =
1

NP

NP−1
∑

i=0

n(iP + j) (6)

with j = 0, 1, . . . , P − 1. So (4) can now be written as

(C + B̃ + E)h = ŷ − ñ (7)

whereC andE areP×P circulant matrices with first columns
[c(0) c(1) . . . c(P − 1)]T and[e(0) e(1) . . . e(P − 1)]T re-
spectively, andh = [h(0) h(1) . . . h(P − 1)]T , with similar
expressions for̂y and ñ. Now theP × P matrix B̃ can be
expressed as̃B = B̃1 + B̃2, whereB̃1 is circulant with first
column[b̃(0) b̃(1) . . . b̃(P − 1)]T andB̃2 is upper triangu-
lar Toeplitz and[b(−k)−b(N−k)]

NP
are the elements of thek-th

(k = 1, 2, . . . , P − 1) upper diagonal.

2.2. Iterative ST (IST)

In this section we consider two iterative channel estimation
schemes for ST. For the ST case (i.e. whenE = 0 in (7)) we
haveŷ = (C + B̃)h + ñ. And using the channel estimate
C−1ŷ from [2] then

ĥST = C−1ŷ. (8)

Therefore substitutinĝy from (7) we get

ĥST = h + C−1B̃h + C−1ñ. (9)

Now we can think of two ways of improving the estimate of
h in the ST scenario. First estimateS in (2) using the ST
algorithm followed by minimum mean square error (MMSE)
equaliser (i.e.,̂SST). So the channel estimate using the least-
squares method (̂hLSST) from (2) (i.e. LSST) would become

ĥLSST = (ŜH
STŜST)

−1ŜH
STx (10)

which is essentially what was proposed in [4] and whereŜST

is a ST estimate ofS. The second approach is to use ST fol-

lowed by a MMSE equaliser and make an estimate (ˆ̃
B) of B̃
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in (7). So we can improve the channel estimate upon ST in
(9) by using iterative ST (̂hIST) via

ĥIST = (C + ˆ̃
B)−1ŷ. (11)

Therefore substitutinĝy from (7) (withE = 0) we get

ĥIST = (C + ˆ̃
B)−1

{

[C + B̃]h + ñ
}

= (C + ˆ̃
B)−1(C + B̃)h + (C + ˆ̃

B)−1ñ.

Since we assume thatˆ̃B ≃ B̃ then (9) is improved (see (15))
via

ĥIST = (C + ˆ̃
B)−1ŷ ≃ h + (C + B̃)−1n̂. (12)

From (11) improved MMSE equalised symbols are obtained
that can be fed back again to be used in (11). This itera-
tive ST process (IST) can be repeated as needed. The ben-
efits of the iterative processes based on (10) or (11) instead
of the traditional ST based on (8) are now made clear if we
compute the channel estimate MSE. We define MSE(ĥ) :=

E
{

∑

M−1
k=0 |ĥ(k) − h(k)|2

}

, then we can show that

MSE(ĥST) =
1

NP

[

σ2
b

∑

P−1
k=0 |h(k)|2 + σ2

n

σ2
c

]

(13)

MSE(ĥLSST) ≃
σ2

n

NP (σ2
b

+ σ2
c )

(14)

MSE(ĥIST) ≃
σ2

n

NP σ2
c

(15)

assuminĝSST ≃ S and ˆ̃
B ≃ B̃ in (10) and (11) respectively.

We have assumed training sequences withCCH = Pσ2
cI,

for the usual reasons given in [2, 5]. Since the IST method
of (11) is based on first-order statistics, it is computationally
very efficient compared to the LSST method proposed in [4],
and the performance of the IST will approach that of DDST
(see (19)) when accurate equalisation is achieved (i.e. long
data records and high SNR).

2.3. Least-squares DDST algorithm (LSDDST)

In this section we present an iterative scheme for DDST. It is
not difficult to see that if we choosee(k) = −b̃(k)P , with
k = 0, 1, . . . , N − 1 and(·)P implying arithmetic modulo-
P , in (1) —same result as [3] but obtained via a different
analysis— thenE = −B̃1 and so for DDST (7) becomes

(C + B̃2)h = ŷ − ñ. (16)

Now if we use a cyclic prefix
{

b(−k) = b(N − k)
}P−1

k=1
then

B̃2 = 0, but even without a cyclic prefixlimNP→∞ B̃2 = 0.
So let us assume a cyclic prefix (as was done in [3]), but in
practice, no cyclic prefix makes little difference sinceB̃2 ≈
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Fig. 1. Channel estimation error for IST. Note that IST ap-
proaches DDST. ‘Fully trained’: all transmitted power used
for channel estimation (benchmark for any trained algorithm).
Note that TDM and DDST coincide and so are indistinguish-
able on graph.

0, due to the usual choice of a relatively largeNP . So from
(7) with (B̃ + E = 0) then for DDST we have

ĥDDST = C−1ŷ = h + C−1ñ. (17)

Using an equaliser based on the channel estimates of (17), we
can obtain an estimate forS in (2), ŜDDST. So similarly the
optimum channel estimate (ĥLSDDST) based on (2) and̂SDDST

using least-squares approach would be

ĥLSDDST = (ŜH
DDSTŜDDST)

−1ŜH
DDSTx. (18)

As before, usinĝhLSDDST in (18) and MMSE equalisation a
better estimate forS can be obtained (taking into account the
method to removee(k) proposed in [3]), and then fed back to
(18) to form an iterative process. Again it is not difficult to
show that

MSE(ĥDDST) =
σ2

n

NP σ2
c

(19)

MSE(ĥLSDDST) ≃
σ2

n

NP

(

σ2
b+e

+ σ2
c

) (20)

assuminĝSDDST ≃ S in (18). Now from (13) we can observe
that in ST the data acts as interference, whereas in LSST we
effectively remove the interference from the data and even in-
crease the training power as can be seen from (14). Also in
IST (15), we remove the intereference of the data but the train-
ing power remains the same and so it approaches the DDST
performance of (19). Finally we can observe from (20) that
the training power has effectively been increased.
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Fig. 2. Channel estimation error for LSST and LSDDST.
LSST and LSDDST converge to a fully trained system. Note
that TDM and DDST coincide and so are indistinguishable on
graph.

2.4. Time Division Multiplexed Training

Traditionally, the training sequence was time division multi-
plexed (TDM) with the information sequence. Here we now
compare both training schemes in a simplified scenario. So,
the first question that arises is how to make a fair compari-
sion. We have chosen to force DDST and TDM to provide
the same channel estimation error, and then to compare the
BERs of both methods. Now, it can be easily be shown that
the channel estimation error for TDM is

MSE(ĥTDM) =
M

Nt

σ2
n

σ2
t

(21)

whereNt is the length of TDM training sequence after the
memory of the channel is full. Comparing (21) with (19), then
DDST and TDM will have same channel estimation error if
Nσ2

c
= Ntσ

2
t
, since we have assumedP = M , i.e. the

period of training sequence is equal to the number of taps in
the channel. Note that to estimate the channel under the TDM
scheme the memory of the channel must already be full and
so Nt + M − 1- length training sequence is required with
Nt ≥ M . Finally, note that for DDST, in addition toN data
samples we require(M − 1)- length cyclic prefix. And so
TDM and DDST will have the same MSE(ĥ), but TDM will
use significantly more symbols(Nt+M−1) for training than
DDST uses for its cyclic prefix (M−1)—hence the advantage
of DDST.

3. SIMULATION RESULTS

The results of the simulations are shown in Figures 1–3 for
three-tap Rayleigh fading channels. The channel coefficients
were complex Gaussian, i.i.d. with unit variance. The average

Method
Computational Performance

burden approaches

ST ([1, 2]) O(M2 + M) –

IST
O(3QN)

DDST ([3])
for 2 iterations

LSST ([4])
O(NM2)

Fully trained
for 1 iteration

LSDDST
O(NM2)

Fully trained
for 1 iteration

TDM O(Nt(M
2 + M) + M2) DDST ([3])

Table 1. Summary of the performance and computational
burden of all the methods presented here. Note thatM and
N refer to (1);P refers to the period ofc(k) in (1); andQ

refers to the MMSE equaliser length;Nt refers to the TDM
training sequence of lengthNt + M − 1.

energy of the channel was set to unity. The data was a BPSK
sequence, to which a training sequence fulfillingCCH = Pσ2

c I
was added before transmission. The training to information

power ratio
(

TIR =
σ

2
c

σ2
b+e

)

was set to−6.9798 dB, P = 7

andN = 420 and a linear MMSE equaliser of lengthQ = 11
taps and optimum delay was used throughout. In order to
make a fair comparison, we have included the results of chan-
nel estimation and BER using the traditional TDM scheme.
The channel estimation performance of the DDST scheme is
the same as that of the TDM scheme (for the reasons previ-
ously described), as is verified in Figures 1 and 2, where the
number of training symbols in the TDM scheme isNt +M −
1 = 72, compared to the DDST cyclic prefix ofM − 1 = 2.

So Figure 1 gives the channel estimation MSE for the IST
algorithm. It can be seen that there is a significant improve-
ment in channel estimation and it approaches normal DDST
and TDM performance just after 2 iterations. Now Figure 2
gives the channel estimation MSE for the LSST algorithm of
[4] along with the proposed LSDDST. It can be seen that there
is an even larger improvement over the normal DDST and that
they both approach the performance of fully trained systems.
Note that our method of LSDDST only requires 1 iteration to
effectively converge as opposed to the LSST method in [4]
that requires 2 iterations. Figure 3 shows the BER perfor-
mance for the proposed IST algorithm along with the TDM
scheme and when the channel is completely known. We can
see that even with the low complexity IST, after two iterations
we get virtually the same BER performance as that obtained
when the channel is completely known for the superimposed
training scheme. Figure 4 shows the BER for the proposed
LSDDST algorithm along with the LSST [4]. Again we can
observe that the performance of LSDDST is similar to the
case when the channel is known completely for superimposed
training scheme as well as to that of LSST [4].

Even the low complexity IST method after two iterations
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Fig. 3. BER for IST. ‘Known channel-only data’: BER when
the channel is completely known and full power is given to
data; ‘Known channel superimposed training’: BER when the
channel is completely known and some of the data power is
allocated for training.

gives virtually the same BER performance as one iteration of
LSST and LSDDST. It can also be observed that while the
BER performance of all the proposed methods is very close
to the TDM scheme, the latter however consumes more band-
width. Table 1 gives the summary of the performance and
computational burden of all the methods presented. Note that
the computational burden of 2 iterations of IST isO(3QN)
but withO(NM2) per iteration for both LSST and LSDDST,
yet all have almost the same BER.

4. CONCLUSIONS

In this paper, the symbols equalised via a hard detector pre-
ceded by a linear MMSE equaliser (designed using the chan-
nel estimated from an ST approach) are fed back into the
ST method. As a result, better channel estimates and hence
a more accurate equalisation is possible, which in turn can
be used in the next iteration. The theoretical limiting per-
formance of this iterative ST method (IST) is that of DDST,
which is obtained when good equalisation is possible —long
received records and high SNR. In practice, convergence is at-
tained in two iterations. Another method, but suffering heav-
ier computational burden, was derived by Meng and Tugnait
[4]. Here we re-use the equalised symbols, not in the ac-
tual ST algorithm as in IST, but for a traditional least squares
trained channel estimate (LSST). This LSST method approac-
hes, for long data records and high SNR, the performance
of a fully trained system after two iterations as regards the
channel MSE estimates, and after one iteration as regards the
BER. In this paper we also implemented the previous LSST
with DDST, so that as simulations illustrate, convergence is
achieved after one iteration (for both channel MSE and BER).
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Fig. 4. BER for LSST and LSDDST. ‘Known channel-only
data’: BER when the channel is completely known and full
power is given to data; ‘Known channel superimposed train-
ing’: BER when the channel is completely known and some
of the data power is allocated for training.

As far as the BER is concerned, simulations have shown that
all the iterative methods considered here have approximately
the same limiting performance. So, due to their computational
burdens it is clear that IST is the algorithm of choice.

One possible application of this work is to use ST on the
uplink (with the base-station performing IST estimation) and
DDST on the downlink. In this scenario, we will have DDST
performance in both directions, but with all the additional
computational burden at the base-station, and not at mobile.
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