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ABSTRACT

We propose new non-separable two dimensional biorthogo-
nal wavelets whose filters are defined on the regular triangu-
lar lattice on a plane. Their construction uses lifting in the
polyphase representation of the filters. While filters of arbi-
trary orders may be obtained by following the same way as
in 1D case, in this paper we focus our attention mainly on the
construction method using a few simple examples. Applying
one of the example filters to simple images, we show that
isotropy of images are improved in the wavelet transform as
compared with the usual tensor product wavelet transform.

1. INTRODUCTION

Image processing is one of the major application areas of
wavelet transform. In most cases wavelet transform is carried
out in the tensor product form, i.e., one dimensional wavelet
transform is applied in horizontal and vertical components
of the matrices of image data independently [1]. As a result,
isotropy of images may not be well respected. To remedy
this drawback, many attempts have been carried out to con-
struct non-separable wavelets [2], or to implement dual-tree
wavelet transforms [3, 4]. They are not used as a standard
tool, however, because they are not so easy to construct or to
use in actual computations.

On the other hand, in the advent of lifting scheme [5],
the so-called second generation wavelets [6] have opened a
way to handle data on irregular grids over arbitrary surfaces
[7]. They seem to gain popularity in efficient parametrization
of curved surfaces, in the framework of subdivision scheme
[8]. However, isotropy, or rotational symmetry, in two di-
mensional data is not of major concern.

If we restrict to data on a plane such as images, the usual
(first generation) wavelets would be more desirable, since
they would allow simpler computation due to their period-
icity on the plane. As a first step toward this end, we propose
biorthogonal wavelets whose filters are defined on the regular
triangular lattice, which we call triangular wavelets.

After submission of this paper, the authors have learned
of [11, 12], in which orthogonal quadrature mirror filters de-
fined on the triangular lattice have been considered. While
their results agree with ours partly, e.g., the halfband condi-
tion (7) below, our method is completely new. In fact, our
method uses lifting in the polyphase representation extended
to the triangular lattice, which allows construction of trian-
gular biorthgonal wavelet filters of an arbitrary order.

After a brief review on 1D biorthogonal wavelet filtes in
the next section, we explain how to construct our triangu-
lar wavelet filters, following the general formalism laid out
by one of the authors for orthogonal case [13]. As a con-
crete example, we construct the CDF(2,2) biorthogonal filter
extended to the triangular lattice, and show their structure in
the frequency domain together with comparison with the fea-
tures of a filter in [11]. Finally, applying the filters to some
simple images, we demonstrate that isotropy of images are
well respected. Section 5 summarizes our conclusions.

2. BIORTHOGONAL WAVELETS

The discrete signal{c j [k]}, k ∈ Z, is decomposed by the low
pass (LP) filter{h[k]} and the high pass (HP) filter{g[k]},
followed by downsampling, to yield the coarse component
{c j−1[k]} and detail component{d j−1[k]}, respectively, of half
a resolution. In the polyphase representation, the signal

ĉ j(ω) =
∑

k∈Z
c j [k] e−iωk

is decomposed into even and odd components

ĉ j,e(ω) =
∑

k∈Z
c j [2k] e−iωk, ĉ j,o(ω) =

∑

k∈Z
c j [2k + 1] e−iωk,

and the decomposition of the signal is carried out as

(
ĉ j−1(2ω)
d̂ j−1(2ω)

)
= P̂(2ω)†

(
ĉ j,e(2ω)
ĉ j,o(2ω)

)
, (1)

whereP̂(ω)† is the Hermitian conjugate of the polyphase ma-
trix.

A convenient method to construct invertible polyphase
matrices is lifting. The odd-indexed samplec j [2k+ 1] is pre-
dicted by the predictorp of even-indexed samplesc j [2k], and
c j [2k + 1] is replaced byd j−1[k] which is the difference be-
tween the original value and the prediction,

c j [2k + 1]→ d j−1[k] = c j [2k + 1] − p
(
c j [2k]

)
.

Then, the even-indexed samplesc j [2k] are updated by

c j [2k] → c j−1[k] = c j [2k] + u
(
d j−1[k]

)
,
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where the normalization of the updateru is chosen such that
the sum of the coarse components is halved by the decompo-
sition, ∑

k

c j−1[k] =
1
2

∑

k

c j [k].

Finally, c j [k] and d j [k] are rescaled by
√

2 and 1/
√

2, re-
spectively, such that the total energy of the signal is pre-
served by the decomposition. This scheme corresponds to
the polyphase matrix

P̂(ω)† =

(√
2 0

0 1/
√

2

) (
1 û(ω)
0 1

) (
1 0

−p̂(ω) 1

)
, (2)

where p̂(ω) is defined by
∑

k p(c j [2k])e−iωk = p̂(ω) ĉ j,e(ω),
and similarly for the updater ˆu. This polyphase matrix is in-
vertible, and the reconstruction is carried out by its inverse,
which guarantees perfect reconstruction. In particular, if ˆp
andû are polynomials ofe−iω, the decomposition and recon-
struction filters become FIR, with primal and dual filters, re-
spectively.

For example, the choice ˆp(ω) = 1 andû(ω) = 1/2 gives
Haar filter,ĥ(ω) = ˆ̃h(ω) = (1+ e−iω)/

√
2, andĝ(ω) = ˆ̃g(ω) =

(−1 + e−iω)/
√

2, which turns out to be orthogonal. On the
other hand, if we choose the linear prediction,

p̂(ω) =
1 + eiω

2
, û(ω) =

1 + e−iω

4
,

then we obtain the CDF (2,2) filter [9]

ĥ(ω) =
−ei2ω + 2eiω + 6 + 2e−iω − e−i2ω

4
√

2
,

ĝ(ω) =
−1 + 2e−iω − e−i2ω

2
√

2
.

(3)

3. TRIANGULAR BIORTHOGONAL WAVELETS

Discrete signals are naturally indexed by integers in one-
dimension, but the indexing may become a nontrivial prob-
lem in dimensions more than one. We find it convenient to
employ the primitive translation vectors used in solid state
physics in classifying crystal structures, see e.g., [10]. In
two-dimensional plane, we define two primitive translation
vectors

t1 =

(
1
0

)
, t2 =


− 1

2√
3

2

 .

For notational convenience we also definet3 = −t1 − t2 and
t0 = 0. The regular triangular Bravais lattice is defined by

Λ = {t = n1 t1 + n2 t2| (n1,n2) ∈ Z2}.
The domain containing all the points whose closest site is
a given sitet ∈ Λ is the Wigner-Seitz cell of the site. In
our regular triangular latticeΛ, the Wigner-Seitz cell is a
hexagon, which plays the role of a pixel of an image. The
vectorstm, m = 1, 2, 3, the Bravais latticeΛ, and the Wigner-
Seitz cell are shown in Figure 1 (left). The reciprocal lattice
vectors are defined by

λ1 =


0
2√
3

 , λ2 =


1
1√
3

 ,

-1 1 2
x

-1

1

2

y

t1

t2

t3

ξ

4 π

2 π

2 π

2 π

− 2 π

− 2 π 2 π

η

λ

2λ

1

Figure 1: The primitive translation vectors, Bravais lattice,
and the Wigner-Seitz cell (left), the reciprocal lattice vectors,
reciprocal lattice, and the Brillouin zone (right)

andλ3 = λ1 + λ2. They generate the reciprocal lattice

Λ̂ = {2π(λ = m1λ1 + m2λ2)| (m1,m2) ∈ Z2}.

The Wigner-Seitz cell of the reciprocal latticêΛ is the Bril-
louin zone. The vectors 2πλm, m = 1, 2, the reciplocal lattice
Λ̂, and the Brillouin zone are shown in Figure 1 (right).

The LP filter{h[ t]}t∈Λ is now defined on the Bravais lat-
ticeΛ, and let

ĥ(ω) =
∑

t∈Λ
h[ t] e−iω·t , ω ∈ R2.

Sinceĥ(ω) is periodic with respect to the translationω →
ω+ 2πλ, one of the Brillouin zones is its defining domain. A
crucial observation is that all the sites ofΛ may be classified
into four independent sublattices

Λm = {2t + tm| t ∈ Λ}, m = 0,1,2,3,

which play the role of even and odd indices in one dimension.
Accordingly, the filter may be represented as the sum of the
corresponding components

ĥm(ω) =
∑

t∈Λ
h[2t + tm]e−iω·t , m = 0,1,2,3.

The signal{c j [ t]}t∈Λ is also assumed to be given on the
Bravais latticeΛ. Let

ĉ j(ω) =
∑

t∈Λ
c j [ t] e−iω·t ,

then it is decomposed into four independent components

ĉm, j(ω) =
∑

t∈Λ
c j [2t + tm] e−iω·t , m = 0,1,2,3.

As in (1), the decomposition is represented as



ĉ j−1(ω)
d̂1, j−1(ω)
d̂2, j−1(ω)
d̂3, j−1(ω)


= P̂(ω)†



ĉ0, j(ω)
ĉ1, j(ω)
ĉ2, j(ω)
ĉ3, j(ω)

 , (4)

whereP̂(ω)† is the Hermitian conjugate of the 4×4 polyphase
matrix. Note that there are three detail componentsd̂m, j−1(ω),
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m = 1,2,3. We now wish to extend the polyphase matrix (2)
to this case, which is found to be

P̂(ω)†=



2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

2





1 û1 û2 û3
0 1 0 0
0 0 1 0
0 0 0 1





1 0 0 0
−p̂1 1 0 0
−p̂2 0 1 0
−p̂3 0 0 1





1 0 0 0
0 −1 1 1
0 1 −1 1
0 1 1 −1


(5)

with three predictors ˆpm(ω) and updaters ˆum(ω), m = 1,2,3.

We define the dual polyphase matrix aŝ̃P(ω) = P̂(ω)†
−1

,
then the perfect reconstruction condition

̂̃P(ω) P̂(ω)† = I (6)

is guaranteed. In particular, its upper left component implies

ˆ̃h(ω) ĥ∗(ω) +

3∑

m=1

ˆ̃gm(ω) ĝ∗m(ω) = 4 (7)

corresponding to the halfband condition in one dimension.
The orthogonal case of (7) has been obtained in [11].

Once the filters are found, the two-dimensional scaling
functionsφ(r) and waveletsψm(r), m = 1, 2, 3, r ∈ R2, are
defined by their Fourier transform,

φ̂(ω) =

∞∏

j=1

1
2

ĥ
(ω
2 j

)
, ψ̂m(ω) =

1
2

ĝm

(ω
2

)
φ̂
(ω

2

)
, ω ∈ R2.

We do not further consider these functions, and concentrate
on the properties of the filters. We now proceed to some
examples.

3.1 Triangular Haar Filter

The simplest choice is

p̂m(2ω) = 1, ûm(2ω) =
1
4
.

Then we find the triangular Haar filter



ĥ(ω)
ĝ1(ω)
ĝ2(ω)
ĝ3(ω)


=



ˆ̃h(ω)
ˆ̃g1(ω)
ˆ̃g2(ω)
ˆ̃g3(ω)


=

1
2



1 1 1 1
−1 −1 1 1
−1 1 −1 1
−1 1 1 −1





1
e−iω·t1

e−iω·t2

e−iω·t3


,

which is orthogonal. As our preliminary studies show [14],
the energy is evenly distributed over three detail decomposed
components, implying that isotropy of images is respected.
We do not consider this filter further here.

3.2 Triangular Linear Prediction Filter

If we choose

p̂m(2ω) =
1 + ei2ω·tm

2
, ûm(2ω) =

1 + e−i2ω·tm

8
, (8)

we have the triangular version of CDF(2,2) filter (3). We dis-
play the filter coefficients and the Fourier transform in Fig-
ure 2–5. The filters ˆgm(ω), m = 1 and 3 are simply±2π/3
rotations of them = 2 case. As we see in the frequency
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Figure 2: The LP filter coefficientsh[ t] and |ĥ(ω)|
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Figure 3: The HP filter coefficientsg2[ t] and |ĝ2(ω)|

response along theλ1 direction in Figure 6, the sum in (7)
consists of low pass, high pass and band pass combinations

ˆ̃h(ωλ1) ĥ∗(ωλ1) = 1 +
5 cosω

4
+

11
16

cos 2ω +
11
16

cos 3ω

+
1
4

cos 4ω +
1
16

cos 5ω +
1
16

cos 6ω,

ˆ̃g1(ωλ1) ĝ∗1(ωλ1) =
11
8
− 17 cosω

8
+

3
4

cos 2ω +
1
8

cos 3ω

− 1
8

cos 4ω,

3∑

m=2

ˆ̃gm(ωλ1) ĝ∗m(ωλ1) =
13
8

+
7 cosω

8
− 23

16
cos 2ω − 13

16
cos 3ω

− 1
8

cos 4ω − 1
16

cos 5ω − 1
16

cos 6ω.

Note that near the alias pointω ≈ πλ1,

ˆ̃h(ωλm) ĥ∗(ωλm) ∝ (ω − π)4,

which implies that the filter is of order (2,2).
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Figure 4: The dual filter coefficientsh̃[ t] and | ˆ̃h(ω)|
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Figure 5: The dual filter coefficientsg̃2[ t] and | ˆ̃g2(ω)|
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Figure 6: The frequency response of the filters

3.3 Generalization to Higher Orders

In (8), if we choose

ûm(ω) =
−3eiω·tm + 19+ 19e−iω·tm − 3e−i2ω·tm

16
, (9)

we have the triangular version of CDF(2,4) filter (3). This
shows that our method is general so that filters of higher or-
der may be obtained. However, we do not discuss general
case here, and we demonstrate that decomposed images re-
spect isotropy with the triangular linear prediction filters con-
structed in Subsection 3.2.

4. ISOTROPY IN IMAGE PROCESSING

We now wish to see that the wavelet transform respects
isotropy of images. However, our triangular filters are de-
signed to deal with two-dimensional data defined on the
regular triangular Bravais lattice, which is not the standard
format; image data are usually rectangular arrays of num-
bers. To deal with this difference in our preliminary study
of isotropy, we consider that the second primitive translation
vector t2 is rotated clockwise to approach they axis. Then,
the hexagonal Wigner-Seitz cells will be deformed to form
nearly rectangular arrays, as shown in Figure 7. We treat im-
age data as the original signal{c j [ t]}, and decomposed im-
ages{c j−1[ t]}, and{d j−1[ t]}, t ∈ Λ, in this limit. We compare
the decomposition of sample images by our triangular linear
prediction filter (TriDWT), with the images of wavelet trans-
form in the tensor product transform (TensorDWT). Since
the filters are biorthogonal in all cases, we compute the pri-
mal and dual transforms, which is used to obtain the energy
of coarse and detail components.

We consider the upper right quarter of concentric circles
as an example of axially symmetric artificial images, and
Lena image as an example of natural images. Figure 8–9
show the decomposed images. The upper left block is the
result of primal TensorDWT, and upper right block is that of

2

Figure 7: The honeycomb and nearly square array of Wigner-
Seitz cells

Figure 8: Decomposed images of concentric circles. (Upper
row is tensor primal and tensor dual, bottom row is triangular
primal and triangular dual)

Figure 9: Decomposed images of Lena image. (Upper row is
tensor primal and tensor dual, bottom row triangular primal
and triangular dual
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Figure 10: Energy distribution over the three detail compo-
nents of concentric circles. (red or left side of each column
corresponds to tensor product transform, and blue or right
side corresponds to triangular transform)
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0.001

0.002
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0.005

Figure 11: Energy distribution over the three detail compo-
nents of Lena image, in the same format as in Figure 10.

dual TensorDWT. In each block, the LL, LH, HH, and HL
components clockwise from the upper left image. The lower
left block is the result of primal TriDWT, and the lower right
block is that of dual TriDWT. In each block, the coarse, and
the three detail components are placed clockwise from the
upper left image. Note that the values of each image data
are normalized within each image. If the values would be
normalized in each block of four images, the detail images
would be invisible. In Figure 10–11, we show how the en-
ergy is distributed over the detail components.

From these figures, we have the following observations.
• More portion of the total energy goes to the three detail

components in TriDWT.
• Energy is more evenly distributed over the three detail

components in TriDWT, while in TensorDWT the portion
of the energy of HH components is appreciably less than
all the other components.

• The detail components of TriDWT extract the edge struc-
ture of Lena image well.

All the observations indicate that isotropy of images is well
respected in TriDWT.

5. CONCLUSION AND FURTHER STUDIES

A method of constructing new non-separable biorthogonal
wavelet filters defined on the regular triangular lattice is pro-
posed. Using the triangular version of the CDF(2,2) filter,
the filter coefficients, and their structure in the Fourier do-
main are displayed. They are applied to two sample images,
whose results indicate that wavelet transform appears to re-
spect isotropy of images well. We summarize the features of
the triangular wavelet filters.
• Filters of an arbitrary order can be constructed.
• All the filter coefficients can be made real exact fraction,

and the number of coefficients is relatively small.
• Due to the use of lifting, computational cost of DWT is

not large.
In summary, our triangular wavelet filters appear to have
many nice features. While definite statements can be made
only after thorough investigations, which is currently under
study, our new triangular filters appear promising.
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