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ABSTRACT 
Voice activity detection is a necessary preprocessing step for 
many applications like channel identification or speech rec-
ognition. The problem can be solved even under noisy con-
ditions by exploiting characteristics of speech and noise 
signals. However, when more speakers are active simultane-
ously, these methods are generally unreliable, since multiple 
speech signals may overlap completely in the time-frequency 
plane. Here, a new approach is suggested which is applica-
ble in multi-speaker scenarios also, owing to its incorpora-
tion of higher order statistics. Here, independent component 
analysis is used to obtain estimates of the clean speech and 
the angles of incidence for each speaker. Subsequently, these 
estimates can help to correctly identify the active speaker 
and perform voice activity detection. 

The suggested approach is robust to noise as well as to 
interfering speech and can detect the presence of single 
speakers in mixtures of speech and noise, even under highly 
reverberant conditions at 0dB SIR. 

 

1. INTRODUCTION 

Multi-speaker voice activity detection is an important pre-
processing step for many noise reduction and channel estima-
tion methods e.g. in [3]. It greatly improves the speed and 
reliability of speaker recognition systems and it also reduces 
the error rate and decreases the computational effort of 
speech recognizers. The problem of speaker identification is 
complex enough as it is, when the speakers are given indi-
vidual microphones. But, practically, this might not be possi-
ble in real situations, where microphones are placed close to 
each other picking up neighboring speakers along with the 
ambient noise. Furthermore, unknown channel characteristics 
make the situation more difficult and challenging. Labeling 
of the active segments of speakers may be done using com-
putationally less expensive single-channel methods. In many 
cases, speech and non-speech parts can be separated based on 
the energy levels of speech and proper thresholds which are 
dictated by the amount of noise present [5]. But the same 
principle cannot be extended to multi-speaker voice activity 
detection, when energy levels of all individual speech signals 
in the mixture can be almost equal and signals 

 
may overlap completely in the time-frequency plane. Espe-
cially in this case of multiple, simultaneously active speakers,  
robustness greatly improves when localization information is 
learned and used online.  
In this paper, a new approach is suggested to detect the activ-
ity of the speakers using frequency domain independent 
component analysis (ICA) and subsequent beampattern 
analysis. The ability of the proposed method of frequency 
domain ICA to separate the convolutive mixtures has been 
shown e.g. in [1]. Although frequency domain ICA can sepa-
rate the speakers in convolutive mixtures, it cannot recover 
them completely because of the permutation problem that 
arises after the separation of sensor outputs. So ICA must be 
applied in conjunction with another method which can solve 
the permutation problem. Beampattern analysis [4] is an effi-
cient method to resolve the permutation problem. In this 
method, spatial features are exploited to rearrange the per-
muted frequency components. An efficient algorithm with a 
low error rate has been implemented using the same spatial 
features which are computed for detecting the permutations 
in the frequency domain. Voice activity detection (VAD) is 
applied on the speech mixture to detect activity of each of the 
present speakers and to assign labels identifying which 
speaker is active in which segments of the recorded signal.  
 
 The remainder of the paper is organized as follows. In sec-
tion 2, the underlying principles of frequency domain ICA 
and beampattern analysis are explained. Section 3 presents 
the actual algorithm of beampattern-based VAD proposed for 
multi-speaker voice activity detection. Section 4 presents the 
experimental results obtained on real recordings. Section 5 
concludes the paper with observations on the applicability 
and quality of the suggested approach, as well as with sug-
gestions for further developments. 

2. FREQUENCY DOMAIN ICA AND 
BEAMPATTERN ANALYSIS 

Below sections briefly explain frequency domain ICA and 
beampattern analysis. They highlight the main principles that 
are being exploited in the described multi-speaker voice ac-
tivity detection algorithm. 
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Figure 1: Proposed beampattern-based VAD. T1 and T2 are thresh-
olds pertaining to Source  and Source II, respectively. 

                                

2.1 Frequency Domain ICA 
In convolutive mixtures, where sensor outputs contain source 
signals convolved with the room impulse response the output 
can be mathematically represented as convolution of source 
signal and room impulse response as below: 
 
                           x(t) = A(t) * s(t) .                                        (1) 
 
 
This convolutive model in the time domain is difficult to treat 
using ICA when compared to a simple instantaneous or an-
echoic model. But it can be reduced to an instantaneous mix-
ing model, if transformed to the frequency domain. Short 
time Fourier transform is performed frame by frame on the 
sensor outputs. A spectrogram is constructed aligning all the 
calculated STFT coefficients over time. Now, each frequency 
bin can be considered over the 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Layout of the reverberant room used in the experiments. 

 
 
entire time interval as shown below. 
 
                 X(Ω ,t) =  [X1(Ω ,t),….,  Xk(Ω ,t)].                  (2) 
 
The corresponding mixing model pertaining to each fre-
quency bin can be represented as 
 
                        X(Ω ,t)  =    A(Ω )S(Ω ,t)                         (3) 
 
with X, A and S representing the recorded signals, the mix-
ing matrix and  the sources, respectively. Thereafter, a com-
plex JADE algorithm based on joint diagonalization of the 
fourth order cumulant matrices is applied to determine the 
demixing filters for each frequency bin [2]. Unfortunately, 
performance of frequency domain ICA is severely degraded 
by the permutation problem inherent in all convolutive 
source separation tasks solved in the frequency domain. 
 
2.2 Beampattern Analysis 
The spatial properties of the demixing filters estimated by the 
ICA stage can be exploited to solve the permutation problem. 
Directivity patterns of demixing filters are calculated to ob-
tain the spatial zero directions or nulls. This method has been 
successfully used to solve the permutation problem in e.g. 
[4]. Assuming that all incoming signals are planar waves 
obeying the far-field sound propagation model, the directivity 
patterns of a demixing filter ( )W f  and their spatial zeros 
with respect to broadside are calculated using the function 

     
1

( , ) ( ) exp[ 2 sin / ],
K

l lk k
k

l lF f W f j fd cθ π θ
=

= −∑  (4) 
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                              / 2f π=Ω                                            (5) 
 
where ( )lkW f  is the l,k’th element of ( ),W f kd is the 
distance between reference microphone and the k’th micro-
phone, c is the velocity of sound and l designates the source. 
One can estimate the direction of arrival of sources by ob-
serving the beampatterns of ICA filters as defined in the 
above equation.   
 
For beampattern-based VAD, in this paper a 2x2 mixing 
model is considered. For such a system, we can observe that 
for each filter, nulls exist in the directions of the main inter-
ferences. Since higher order statistics are used, which are 
zero for Gaussian noise, in the majority of cases these corre-
spond to the speaker directions. So spatial zero directions for 
the above model can be used for identifying the active speak-
ers in a given frame. These are calculated by finding the an-
gles at which the beampattern function is minimum. 
Mathematically, they are defined as 

              
                  1 1( ) arg min | ( , ) |f F fθ θ= ,              (6)   
                                       θ  
                   2 2( ) arg min | ( , ) |f F fθ θ= .            (7) 
                                        θ  
This model allows spatial nulls to vary over frequency, 

allowing for accurate modeling of reverberation effects, also. 
 

2.3 K-Means Clustering  Algorithm 
 
In the suggested algorithm, estimates of directions of arrival 
(DOA) of sources are required to perform accurate detection 
of active parts of the speakers. An approximate estimation of 
the DOAs of sources is possible by observing the null direc-
tions of unmixing coefficients obtained in each segment of 
speech and clustering them using the K-means algorithm. 
Since there are two sources in the model assumed, one can 
start clustering the null angles with two centriods. Generally, 
if the number of sources is known already, then a simple K-
means algorithm based on Euclidian distance as a criterion is 
sufficient. An acceptable performance can be obtained con-
sidering the fact, that all the null directions observed in each 
segmented speech are highly clustered around the original 
DOAs of the sources. The algorithm is briefly described  
below. 
 

• Start with the initial assumed seeds C1 and C2  
• Until there are no changes in the cluster centroids,        

collect the set of all null angles obtained in each 
segmented   speech.                                          

o Use the estimated centriods C1 and C2 to 
classify the data into clusters by assigning 
them to the closest centriod. 

o For i =1,2; 
 Replace the Ci with centroids of 

the new clusters.      
o End For 

• End Until  

3. BEAMPATTERN-BASED VAD 

 
Although conventional frequency domain ICA separates the 
speech signals, it has to be applied in conjunction with other 
methods like beampattern analysis to resolve the permutation 
problem. The spatial features of the demixing filters, which 
are exploited to solve the permutation problem, can also be 
used for detecting the active parts of the speakers. Even 
though spatial nulls are dependent on frequency, almost all 
the frequency components have approximately similar beam-
patterns, provided that they are arriving from a same direc-
tion or source. So, the frequency components pertaining to a 
particular source can be computed by observing the spatial 
nulls and successively comparing with an estimated DOA of 
the source. Hence, estimation of DOA of source signals is 
crucial. In this algorithm, the DOA of source signals is esti-
mated using the K-means clustering algorithm (Sec 2.3). The 
overall algorithm is presented in a block diagram (see Fig. 1).   
 
[Step 1] Voice activity detection is performed as a pre-
processing step on the sensor outputs. VAD separates the 
speech and non-speech segments based on the energy levels 
and zero crossing rates as described in [5]. It significantly 
decreases the number of false detections of active speech 
segments, because in non-speech segments, ICA outputs 
themselves are not reliable indicators.  

 
[Step 2] For each speech segment, demixing filter parameters 
are estimated over 500ms-blocks using frequency domain 
ICA. A complex JADE algorithm based on the joint diago-
nalization of fourth order cumulant matrices is used to find 
the inverse mixing matrix and to compute estimated source 
signals.   

 
[Step 3] Spatial nulls are calculated for all frequency bins 
using beampattern analysis. The beampattern defined in Eq. 
(4) is calculated for every high energy frequency component 
and spatial nulls are determined by finding the minima using 
Eq. (6) and (7). All these nulls are compared with the esti-
mated DOA of source I and source II. Now, a segment can be 
labeled as an active part of speaker I, if a high percentage of 
the demixing filters have nulls similar to its estimated mean 
DOA. The same principle is followed to identify the active 
parts of speaker II. But before that, prior information about 
the DOA of the source signals is needed. A sequential k-
means clustering algorithm has been implemented for an 
approximate estimation of the source’s DOA. The number of 
clusters that has to be considered depends on the number of 
sources present. As mentioned above, spatial nulls of the 
demixing filters are oriented only in the direction of sources.  
If the sources are not quickly moving, it is possible to esti-
mate the number of sources as well as their directions by the 
k-means clustering algorithm. Few initial segments of micro-
phone outputs are used to determine the approximate DOA of 
the source signals. 
 
 
 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



 
Table1: Results obtained when only VAD is applied on the 
real room recordings. 
 
 
 
 [Step 4]  In the last step of the algorithm, to detect active 
segments of the speakers, thresholds are defined for the 2x2 
model, one for each speaker. These thresholds are the mini-
mum number of frequency components having similar spatial 
nulls that must be present in a segment to declare a particular 
speaker to be probably active. The proper setting of these 
thresholds is crucial for detection of active speaker. These 
thresholds are set by observing the number of frequency 
components apparently arriving from the direction of the 
sources when the input is noise or silence only. For best re-
sults, the thresholds are set to twice the values that are ob-
served. 
 

4 EXPERIMENTS AND RESULTS 

 

4.1 Test data 

In the experiments, speech signals by four different speakers 
obtained from the TI-Digits database were played back and 
recorded. All speech signals are 4 minutes long. Here, the 
2x2 mixing model was considered. Therefore, only two dif-
ferent speakers are played back at any time using loudspeak-
ers. Microphone outputs are recorded while playing two      
males in one case and one female and one male speaker in 
the other. Loudspeakers are placed at a distance of 1 m from 
the microphone array. In the first configuration, loudspeakers 
are placed at -55° and 37° relative to broadside and in the 
second, speakers are placed relatively close to each other 
with angles -42° and 5°(refer to Fig 2). In both the configura-
tions, a simple model is considered by placing the speakers in 
two different quadrants with respect to the broadside direc-
tion of the microphone array. All the recordings are per-
formed in a lab room of 6.7 m x 8.3 m x 3.7 m. Distance 
between the microphones is crucial and determines the beam-
pattern of the demixing filters. It also results in spectral alias-
ing if the distance between the microphones d does not obey 
the inequality 
                            
                                d  ≤  c / fSamp ,                                       (8) 
 
where c is the velocity of the sound in air and fSamp is the 
sampling  frequency of the signal. But if the maximum fre-
quency fMax present in the signal is known, a distance 
d’=c/fMax can be chosen to avoid aliasing problems. which is 
 
 
 

 
Table 2: Results obtained when Beampattern-Based VAD is 
applied on the real room recordings.   
 
 
actually greater than the maximum distance d allowed ac-
cording to Eq. (8). Considering c = 345m/s and  fSamp = 16 
kHz, the maximum frequency fMax will be 8 kHz. Thus, the 
maximum distance d’, that should be maintained between the 
microphones to avoid spectral aliasing is 4.31 cm. Here, d = 
3 cm is chosen. 
 
In order to calculate the reverberation time (t60), a method 
based on time-stretched pulse (TSP) signals is implemented 
[6]. An approximate estimation of the acoustic transfer func-
tion (ATF) is possible by transmitting a time stretched pulse 
and convolving the sensor output with the filter having the 
inverse characteristics of same TSP.  Reverberation time can 
be calculated by backward integration of the impulse re-
sponse. Here, t60 of 300 ms is observed in the recorded room 
at the described loudspeaker setup.  
 
The mixtures are designed with frequent speaker changes and 
with speaker overlaps during more than 50% of the time.  
 
4.2 Results 
 
The performance of the multi-speaker voice activity detec-
tion algorithm is assessed using false alarm rate (FAR), false  
rejection rate (FRJ), speaker error rate (SER) and total error 
rate (ERR). The FAR for each mixture is defined as follows: 
 
  
  FAR =    No. of frames falsely labeled as active  .            (9) 
                                Total no of frames 
    
The FRJ is determined by                       
   
 FRJ =      No. of frames falsely rejected                            (10) 
                  Total no of frames  
 
and the SER is determined by 
                 
 SER = No. of frames falsely labelled as other speaker .   (11) 
                                Total no of frames 
 
The total error is calculated by summing all above errors,                        

 
          ERR=FAR+ FRJ + SER.                                          (12) 
 
The false alarm rate (FAR) gives an estimation of number of 
frames that are wrongly identified as active parts of a 
speaker, while the rate of false rejections (FRJ) shows, how 

VAD FAR (%) FRJ(%)          ERR(%) 
(without SER) 

Speaker I 39.9 3.7 44.6 
Speaker II 54.7 7.2 61.9 

MSAD 
Algorithm 

  FAR 
   (%) 

FRJ 
(%) 

 SER(%)       ERR(%) 
   (with SER) 

Speaker I 24 9.9    1.95      35.83 
Speaker II 16 9.9    0.03      25.93 
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many actual active parts of the speaker are ignored by the 
algorithm and labelled as a noise or silence. The speaker er-
ror rate (SER) gives precisely the number of frames wrongly 
identified as an active part of a speaker, when actually an-
other speaker is active. The parameter FRJ is more signifi-
cant for speech recognizers, as rejection of frames or features 
of the desired speaker always deteriorates the performance of 
speech recognizers. It is usually required to be low for speech 
recognition applications. Similarly, a low FAR is crucial for 
algorithms which identify the channels of speakers in rever-
berant environments. Since channel adaptation methods fail 
to estimate channels correctly during the noisy or double talk 
intervals, a low value of FAR is desired. 
 
Using the above performance parameters, results are pre-
sented in Table 1 and Table 2. Table 1 shows that the FAR of 
speaker I and speaker II are 39.9% and 54.75% respectively 
and FRJ is observed to be 3.7% and 7.2% when only VAD is 
performed on the recordings. Table 2 presents the actual re-
sults of the algorithm. FAR of speaker I and speaker II are 
observed to be 24% and 16% and the corresponding SERs 
are 1.95% and .03%. It can be observed that the average FAR 
decreased by 22.3% and the average speaker error rate has 
dropped to less than 1%. One can also notice that simple 
VAD has a very low FRJ when compared to the ICA-based 
algorithm, but at the expense of high speaker error rates  
which are more than 50% for both speakers, leading to error 
rates of 44.6% and 61.9% respectively. A moderate increase 
in the FRJ can be acceptable, considering the very low values 
of SER and overall error rate ERR.  
 
Beampattern-based VAD was capable of detecting the active 
parts with considerable efficiency, even though the speaker 
overlap is greater than 50% and recordings are performed 
with microphones placed equally far from both sources, lead-
ing to an SIR of about 0 dB. 

5 CONCLUSIONS 

In this paper, a new approach for multi-speaker voice activ-
ity detection is presented. This beampattern-based multi- 
channel VAD is intended for scenarios, in which not only 
voice activity detection but also speech separation is neces-
sary, e.g. for subsequent speech recognition. When that is 
the case, beampattern-based VAD is an example of how 
source separation results can be further processed to obtain 
reliable voice activity detection, even when more than one 
speaker is active simultaneously. For this purpose, spatial 
features of demixing filters have proven essential in distin-
guishing the different speaker signals.  
The resulting algorithm has been tested on highly reverberant 
recordings and found to have a lower error rate and much 
higher sensitivity than previously possible. Furthermore, it is 
shown to be almost perfectly selective with a speaker error 
rate less than 1%. 

REFERENCES 

[1]  W. Baumann, D. Kolossa and R. Orglmeister, “Convolut-
ive source separation based on a beamforming model,” Proc. 
ICASSP 2003, pp.357-360, 2003. 
[2] J. F. Cardoso and A. Suloumiac, “Blind beamforming 
for non Gaussian signals”, IEEE Proc, Vol.140 (6), pp. 362-
370, December 1993. 
 [3] Y. Ephraim and D. Malah, “Speech enhancement using a 
minimum-mean square error short-time spectral amplitude 
estimator”, IEEE Transactions on Acoustics, Speech and 
Signal processing, Vol. 32, No. 6, pp.1109-1121, Dec. 1984. 
[4] S. Kurita, H. Saruwatari, S. Kajita, K. Takeda and F. Ita-
kura, “Evaluation of blind signal separation method using 
directivity pattern under reverberant conditions,”Proc. 
ICASSP 2000, Vol.5, pp. 3140-3143, 2000. 
[5] L.R. Rabiner and M.R. Sambur “Algorithm for determin-
ing the endpoints of isolated utterances”. The Bell System 
Technical Journal,Vol. 54, No. 2, pp. 297-315, 1975. 
[6] N. Aoshima, “Computer-generated pulse signal applied 
for sound measurement”, J.Acoust. Soc. Am. 69, 1484-1488 
(1981). 
 
 

 
 
 
 
 
 
 
 
 
 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


