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ABSTRACT
Determination of an emotional state through speech increa-
ses the amount of information associated with a speaker. It is
therefore important to be able to detect and identify a spea-
ker’s emotional state or state of stress. The paper proposes
an approach based on genetic algorithms to determine a set
of features that will allow robust classification of emotional
states. Starting from a vector of 462 features, a subset of fea-
tures is obtained providing a good discrimination between
neutral, angry, loud and Lombard states for the SUSAS si-
mulated domain and between neutral and stressed states for
the SUSAS actual domain.

1. INTRODUCTION

Technological progress has allowed for an increasing degree
of man/machine interaction. This interaction can be impro-
ved and accelerated by means of spoken communication. In
speech-based communications, emotions play an important
role, sometimes playing an even bigger role than the logi-
cal information also included in the speech. One important
research challenges in the last few years has thus been auto-
matic recognition of the emotional state of a speaker through
speech. It is a well-known fact that the state of stress in which
a speech signal is produced alters the features of the signal.
Being able to understand and identify the stress a speaker is
under is therefore an important objective [1].
Some researchers have combined various techniques to en-
hance performance in recognition of emotional states throu-
gh speech, often using different parameters at the same time
[2]. In [3] we proposed a genetic algorithm feature selec-
tion approach to distinguishing between positive and negati-
ve emotional states. The aim of this paper is a broader clas-
sification taking various speech styles into account. To this
end, nonlinear parameters will also be considered. It is not,
in fact, correct to view the flow of air through the oral cavity
as being linear and to assume that sound wave propagation is
planar. It is more appropriate to see the production of speech
signals as depending on interaction between different types
of movement by the airflow. Studies conducted by Teager [4]
suggest the presence of vortices in the proximity of the vocal
chords which interact with the primary flow and are the main
source of excitement during closure of the chords.
As emerges from the tests described in [5], it is important to
consider parameters that are capable of detecting the presen-
ce of stress as independently as possible from the information
contained in a phoneme. The Critical Band Based Teager
Energy Operator Autocorrelation Envelope Area (TEO-CB-
Auto-Env) has proved to be the most efficient parameter for
this purpose. It is therefore useful to consider this nonlinear
parameter if the aim is not only a simple distinction between

neutral and stressed but a broader classification taking dif-
ferent speech styles into account. Starting from a vector of
462 features a genetic algorithm features selection procedure
is implemented to distinguish between neutral, angry, loud
and Lombard states for the SUSAS simulated domain and
between neutral and stressed states for the SUSAS actual do-
main. This paper thus addresses the effect of insertion of
TEO-CB-Auto-Env in the feature selection procedure, and
comments on the results obtained in subsequent test phases.

2. DATABASE

The extraction of speech parameters in the presence of diffe-
rent emotional states was performed using the SUSAS Spee-
ch Corpus (Speech Under Simulated and Actual Stress). Two
SUSAS domains were used: the Simulated Domain and the
Actual Domain. Four different styles of speech from the first
domain were considered: angry, loud, Lombard and neutral.
The styles considered from the second domain were neutral
and stressed. Since the TEO is more applicable for voiced
sounds than for unvoiced sounds, only high-energy voiced
sections (i.e., vowels, diphthongs, liquids, glides, nasals) we-
re extracted from the word utterances [5]. For each of these
speech styles, and for each of the domains, a subset of words
was chosen and then used in the parameter selection, HMM
training and test phases. The words were those used in [5],
i.e. “freeze”, “help”, “mark”, “nav”, “oh”, “zero”. For each
style of speech in the Simulated Domain, the nine speakers
were asked to utter each word twice. We thus had 108 words
per style: 6 (words) x 2 (utterances) x 9 (speakers) = 108.
In the Actual Domain we had 90 words.

3. SELECTION OF THE SUBSET OF FEATURES BY
A GENETIC ALGORITHM

The audio files containing the words were processed using
a pre-emphasis filter to highlight the high-frequency com-
ponents and then split into 30ms frames at a rate of 10ms.
Various parameters were extracted from each frame:
• 4 LPC Spectrum based Formants (F1−4)
• 16 Mel-Cepstral based parameters (MFCC1−16)
• 16 Real Cepstrum based parameters (RCEPS1−16)
• the Energy Level (logE)
• autocorrelation based estimation of the Pitch (F0)
• 17 Autocorrelation Coefficients (AC1−17)
• 16 Linear Prediction Coefficients (LPC1−16)
• 16 Reflection Coefficients (PARCOR1−16)
• 16 Log Area Ratio Coefficients (LAR1−16)
• 16 Line Spectral Frequencies Coefficients (LSF1−16)
• 17 LPC Cepstral based parameter (LPCC1−17)
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• the Zero Crossing Rate (ZCR)
• the variance of the Linear Prediction Error (σ2

ELPC
)

• 16 Critical Band Based Teager Energy Operator Autocor-
relation Envelope Area
(T EO−CB−Auto−Env1−16)

The first- and second-order time differences are also
computed as

∆x(n) = x(n+1)− x(n−1)

∆∆x(n) = ∆x(n+1)−∆x(n−1)
(1)

The selection system had n = 462 values to work on for ea-
ch frame. To obtain the best subset of m variables out of
a total of n for classification between positive and negative
emotional states, a certain separation criterion has to be defi-
ned. The criterion we used is the scatter matrix [6]. A within-
class scatter-matrix shows the scatter of samples around their
respective expected class vectors:

Sw = ∑
L
i=1 PiE

{
(X −Mi)(X −Mi)T |ωi

}
=

= ∑
L
i=1 PiΣi

(2)

where: Pi is the a priori probability for class i, X is the para-
meter vector, Mi is the mean vector for class i, Σi is the co-
variance matrix for class i, ωi represents class i, and L is the
number of classes. The between-classes scatter matrix repre-
sents the scatter of the expected vectors around the mixture
mean as

Sb =
L

∑
i=1

Pi(Mi −M0)(Mi −M0)T (3)

where M0 = E{x}= ∑
L
i=1 PiMi represents the expected vector

of the mixture distribution. The separation index used J1 was
calculated from the scatter matrixes [3] on the basis of the
following relation

J1 = tr(S−1
w Sb) (4)

The aim was to determine an optimal subset of features for
classification between different emotional states. It is too
complex to do this via analysis of all the possible combi-
nations (with n = 462 and m = 48 there are 5.13 · 1065 pos-
sible combinations). In [3] we used two suboptimal tech-
niques, forward selection and a technique based on genetic
algorithms (GAs) and we showed that the performance obtai-
ned with the selection technique based on a genetic algori-
thm was consistently better than that of the forward selection
technique. The GA is a stochastic global search method that
mimics the metaphor of natural biological evolution. GAs
operate on a population of potential solutions applying the
principle of survival of the fittest to produce (hopefully) bet-
ter and better approximations to a solution. At each genera-
tion, a new set of approximations is created by the process
of selecting individuals according to their level of fitness in
the problem domain and breeding them together using ope-
rators borrowed from natural genetics. This process leads to
the evolution of populations of individuals that are better sui-
ted to their environment than the individuals that they were
created from, just as in natural adaptation. We therefore used
a technique based on genetic algorithms (GAs), obtaining a
subset containing m = 48 features [7]. The fitness function

used to run the GAs was equal to the inverse of the separation
index J−1

1 . Having set the number of individuals making up
the initial population, NIND = 100 ·m, the first chromosome
is randomly generated, comprising a matrix of size NIND ·n,
in which each element is either 0 or 1 and such that the num-
ber of 1s in each row is equal to m.
The algorithm generating the first chromosome is shown in
Fig. 1. The function randperm(n) returns a random permuta-
tion of the first n integers. A selective reproduction operator

ROUTINE CREATE CHROMOSOME
INPUT:
nothing
OUTPUT:
chromosome C

Ci, j=0 : i=1..NIND, j=1..n
I = randperm(n)
j1 = 1
j2 = m
i = 1
while i <= NIND

Ci,I[ j1.. j2]=1
j1 = j1 + m
j2 = j2 + m
if j2 > n

if j1 < n
i = i + 1
Ci,I[ j1..n]=1
Ci,I[1: j2−n]=1

end
I = randperm(n)
j1 = 1
j2 = m

end
i = i + 1

end

Figura 1: Algorithm used to create a new chromosome.

(Selch) selects a new chromosome from the old one on the
basis of the fitness functions for each row; the new chromo-
some is of the same size and has a number of 1s per row equal
to m; the crossover and mutation operators are applied to this
new chromosome. The crossover operation is applied with
a probability of Px = 0.7 when the pairs are chosen for bree-
ding. Fig. 2 shows the algorithm used for recombination. Let
O and E be the arrays containing the indexes of the features
selected for the parents; having generated a random floating
number between 0 and 1 (rand(1.0) function) recombination
is only performed when this number is lower than the pre-
established Px. An integer position x (randint function), is
selected uniformly at random between 1 and the string leng-
th, m, and the genetic information exchanged between the
individuals about this point; then two new offspring strings
O∗ and E∗ are produced. When the parents have indexes in
common, the offspring may have fewer than m features selec-
ted. For this reason the check routine illustrated in Fig. 3 is
used, which ensures offspring with the pre-established num-
ber of features, m. This is achieved by exploiting the indexes
not shared by the parents and the offspring produced (in the
algorithm in Fig. 3 the “\” operator yields all indexes in the
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ROUTINE CROSSOVER
INPUT:
fitness ordered old chromosome C
OUTPUT:
new chromosome C∗

C∗
i, j=0 : i=1..NIND, j=1..n
while i <= NIND

if rand(1.0) < Px
k=1, h=1
for j=1...n

if Ci, j==1
Oh = j
h=h+1

end
if Ci+1, j==1

Ek = j
k=k+1

end
end
x = randint(m)
O∗=[O1 ...Ox Ex+1 ...Em]
E∗=[E1 ...Ex Ox+1 ...Om]
O∗ = check(O∗, i, O, E)
E∗ = check(E∗, i+1, O, E)
for h=1...m

C∗
i,O∗

h
=1

C∗
i+1,E∗

h
=1

end
end
i = i + 2

end

Figura 2: Algorithm used for crossover.

array that appear in the first operand but not in the second).
The mutation algorithm is applied in such a way that it can
be verified with a probability of Pm = 0.7 for each member
of the population. When one or more members invert their
value, passing from 0 to 1 or 1 to 0, the number of elements
with a value of 1 must be equal to m. Once again a check
algorithm is used.
For each generation cycle the positions of the 1s in the row
with the lowest fitness value indicate the m best parameters
for each generation. The generational cycle is repeated 300
times and at each generation the system stores the set of m
parameters with the best performance in terms of the separa-
tion index. At the end of the generational cycle the set chosen
is the one with the best separation index.
Fig. 4 is an example of the trend followed by the separation
index (the inverse of the fitness function) as the number of
generation cycles progresses.

Table 1 indicates the 48 features selected using the GA
technique to classify between the 4 states of the Simulated
Domain and between the 2 states of the Actual Domain.

4. EVALUATIONS

To evaluate the performance of the subset of features selec-
ted using the GA technique, we performed three different
evaluations:

ROUTINE CHECK
INPUT:
offspring index array X
chromosome position p
first parent index array P1
second parent index array P2
OUTPUT:
checked offspring index array X

if ∑
n
j=1 C∗

p, j < m
X∗=sort(X)
A = [P1 P2]
D = A\X∗

I = randperm(length(D))
k=1
for h = 1..m

if X∗
h == X∗

h+1
X∗

h = D(I(k))
k=k+1
if k > length(D) k = 1

end
end

end
X = X∗

Figura 3: Algorithm used to maintain a constant number of
features selected after crossover.

• Text-Dependent Pairwise Stress Classification
• Text-Independent Pairwise Stress Classification
• Text-Independent Multistyle Stress Classification

The classifier used in the test was a baseline five-state HMM-
based classifier with continuous distributions, each with two
Gaussian mixtures. The HMMs were trained and tested using
the HTK-3 tool.
The performance of the selected subset of features are com-
pared with traditional pitch and mel-frequency cepstrum
coefficients (MFCC) and with the TEO-CB-Auto-Env non
linear parameter.

Figura 4: Example of fitness function trend.
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Tabella 1: Genetic Algorithm Features
Features Selected

Parameter ∆0 ∆1 ∆2 #
AC1−17 1 15 - 2
F0 1 - 1 2
F1−4 1,2,3,4 2,4 2,4 8
LAR1−16 3 - 4 2
logE 1 1 - 2
LPC1−16 - - 2 1
LPCC1−17 3,4,5,7,15 - 13 6
LSF1−16 1,5,12 - 1 4
MFCC1−16 9 - - 1
PARCOR1−16 1,2,3,4,6,9,11 - 1,11 9
RCEPS1−16 1,2,8 - - 3
T EO1−16 1,3,7,11 - 8,12,16 7
σ2

ELPC
1 - - 1

ZCR - - - 0

4.1 Text-Dependent Pairwise Stress Classification

The first step involved text-dependent pairwise classification,
in which the HMMs were trained and tested with the same
words. An HMM was trained with the voiced part of each
of the words from each style of speech chosen for the trai-
ning phase. There are thus 24 HMMs (6 words x 4 styles of
speech) for the Simulated Domain and 12 (6 words x 2 styles
of speech) for the Actual Domain. The HMMs were trained
with a series of “replicas” of the same word were uttered by
various speakers. Due to the low number of tones available
for pairwise classification, the “round-robin” method used in
[5] was applied (e.g. in the Simulated Domain for each of
the 18 “replicas” of a word the relative HMM is trained with
17 of the replicas and tested with the remaining word). The
results of this classification are shown in Fig. 5, from which
it can be observed that the system using features obtained by
GA classification gives on average a 5% improvement. Only

Figura 5: Text-Dependent pairwise stress classification
results.

in the case of classification between loud and neutral was
better performance achieved using MFCC parameters.

4.2 Text-Independent Pairwise Stress Classification

The second test involved text-independent pairwise classifi-
cation to see whether the performance of these parameters
dependent, and to what extent, on the information contained
in a text or phoneme. A single HMM was trained for each
style of speech in the two domains: for the Simulated Do-
main four HMMs were trained with 108 words belonging to
the four styles, whereas 270 different words were used in the
test phase. For the Actual Domain the two HMMs for the
neutral and stressed styles were trained with 94 words each
and the tests were performed using 140 different words. Fig.
6 shows the results of this classification. Text-independent

Figura 6: Text-Independent pairwise stress classification
results.

classification using the GA features performed very well as
regards the pairs belonging to the Simulated Domain, and al-
so in the Actual Domain performance was clearly better than
that achieved using the other parameters.

4.3 Text-Independent Multistyle Stress Classification

The aim of the last phase was multistyle text-independent
stress classification. The aim was to verify the accuracy of
the parameters in distinguishing between neutral and stress-
affected speech, and then to evaluate their efficiency in clas-
sifying various types of stress. The Actual SUSAS domain
was not considered in this phase as the stress present in the
tones in this domain is strong and less easy to detect in mo-
st real cases. Each of the 270 words outside the vocabulary
used in the Text-Independent Pairwise test phase was classi-
fied using the four HMMs for the four speech styles in the Si-
mulated Domain. The output was therefore not simply words
classified as neutral or stressed but as belonging to one of the
four styles of stress considered.
The results obtained are given in Table 2: the first two co-
lumns give the rate of correct recognition of words belonging
to the neutral and stressed classes, while the following th-
ree give the percentage of classification of the various stress
styles. Comparison is made exclusively with the TEO-CB-
AUTO-ENV parameter as it allows for better multistyle clas-
sification (Table 3). Analysis of the tables shows that when
GA features are used, performance is considerably better in
classification of the neutral style. Considerable improvement
is also achieved in classification of the angry and Lombard
states. A slight deterioration is observed in classification
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Tabella 2: Text-Independent multistyle classification using
GA selected features.

Test Correct Detection Distribution of Stress
Speech Rate (%) Detection Rate (%)
Style Neutral Stressed Angry Loud Lombard
Neutral 100 0 0 0 0
Angry 9 91 75.44 3.04 12.52
Loud 10 90 0 25.38 64.62
Lombard 0 100 3.78 5.27 90.95

Tabella 3: Text-Independent multistyle classification using
TEO-CB-AUTO-ENV.

Test Correct Detection Distribution of Stress
Speech Rate (%) Detection Rate (%)
Style Neutral Stressed Angry Loud Lombard
Neutral 73.55 26.45 4.32 2.1 20.03
Angry 7.4 92.6 67.21 15.99 16.80
Loud 0.74 99.26 36.3 35.49 28.21
Lombard 15.55 84.45 10.55 9.65 79.80

of the loud state, which is often misclassified as a Lombard
state.

5. CONCLUSIONS

The paper has proposed an approach based on GA selec-
tion procedure to determine a set of features that allow to
distinguish between different styles of stress. In the featu-
re selection procedure the TEO-CB-Auto-Env parameter is
also inserted, because non-linear parameter is essential to
obtain a broader classification taking different speech sty-
les into account. It has been demonstrated that the reco-
gnition system using the parameters selected by GAs per-
formed better than the traditional pitch and MFCCs and the
non linear parameter TEO-CB-Auto-Env in the three diffe-
rent evaluations: Text-Dependent Pairwise Stress Classifi-
cation, Text-Independent Pairwise Stress Classification and
Text-Independent Multistyle Stress Classification.

Rather than recognising emotional states from the way
a single word is uttered, the authors think that better results
could be obtained by analysing whole sentences uttered un-
der a given type of stress. Sentences could be divided into
sections of finite duration and the technique could then be
applied to each section.
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