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ABSTRACT

This contribution focuses on the source separation stage as im-
portant part of underdetermined blind source separation (BSS). So
far nearly all approaches for underdetermined BSS assume inde-
pendently, identically distributed (i.i.d.) sources. They completely
ignore the redundancy that is in the temporal structure of col-
ored sources like speech signals. Instead, we propose multivariate
models based on the multivariate Student’st or multivariate Gaus-
sian distribution and investigate their potential for underdetermined
BSS. We provide a simple yet effective filter based on the sources’
autocorrelations for recovering the sources as basis for further ad-
vances in underdetermined BSS. The challenge is estimating the
filter coefficients blindly. The experimental results support the idea
that source separation for underdetermined BSS can be reduced to
the separation of their autocorrelations.

1. INTRODUCTION

Blind source separation (BSS) describes techniques that aim at sep-
aratingP signals if onlyQ mixed versions of the original signals
are available. The need for BSS arises for example if the signals of
simultaneous conversations are captured by several microphones.
Most BSS approaches assume that there are at least as many mi-
crophones as source signals (Q≥ P ), which is called (over-) deter-
mined BSS.

Instead, we consider underdetermined BSS, where we have less
microphones than source signals (Q < P ). Only few approaches
have been proposed so far [2, 5, 17, 18], and the separation qual-
ity in terms of interference suppression and signal distortion is still
not as good as with (over-) determined BSS. This is in particular
true if wideband signals like speech signals are involved. The dif-
ficulty is that in contrast to (over-) determined BSS the solution of
underdetermined BSS goes beyond system identification. Even if
the mixing system is fully identified, additional effort is required to
separate the mixtures.

So far, nearly all approaches to solve the latter problem assume
independently, identically distributed (i.i.d.) sources [2, 5, 17, 18].
While this assumption may serve well as a first order approxima-
tion, it completely ignores the redundancy that is in the temporal
structure of colored sources like speech signals. Therefore, we pro-
pose multivariate models, that take the temporal correlation explic-
itly into account and investigate their potential. We consider here
only linear, instantaneous mixtures of speech signals in the time do-
main. This paper concentrates on the separation and assumes that
the mixing matrix is known.

After formulating the problem analytically in Sec.2, we pro-
vide statistical models for Bayesian inference in Sec.3. In Sec.4 we
propose a closed-form and numerical approach for minimum mean
square error (MMSE) source estimation based on the posterior dis-
tribution of the sources. Section5 elaborates more on autocorre-
lation estimation, which turns out to be essential for high-quality
underdetermined source separation. Section6 presents experimen-
tal results which are discussed in Section7.

1The author is on leave from the Department of Multimedia Communi-
cation and Signal Processing, University Erlangen-Nuremberg

2. PROBLEM FORMULATION

With sp(t) ∈ R denoting thep-th source signal (1 ≤ p ≤ P ) and
Ã ∈ RQ×P the mixing matrix, we obtain mixed signalsxq(t) ∈ R
(1≤ q ≤Q, Q < P ) by x1(t)

...
xQ(t)

= Ã

 s1(t)
...

sP (t)

+n(t). (1)

n(t) ∈ RP denotes noise added to the sensors. Let

Sp = [ sp(0) · · · sp(T −1) ]
T

, 1≤ n≤ P (2)

denote a frame of lengthT of thep-th original speech signal with
autocorrelation

rp(τ) = E{sp(t)sp(t+ τ)}. (3)

(·)T denotes the transpose. We summarize theP frames of the
different source signals by the vector

S =

 S1
...

SP

 ∈ RP ·T (4)

For each sourceSp the frame-dependent autocorrelation matrix
Rp ∈ RT×T is given by a symmetric Toeplitz matrix. Its first row
is defined by

[ rp(0) · · · rp(T −1) ] (5)

We summarize theP autocorrelation matrices by

R =

 R1 0
. . .

0 RP

 ∈ RP ·T×P ·T (6)

Extending the scalar elements̃Aqp of Ã to diagonal matrices

Aqp =

 Ãqp 0
. . .

0 Ãqp

 ∈ RT×T , (7)

we define an extended mixing matrix

A =

 A11 · · · A1P
...

. . .
...

AQ1 · · · AQP

 ∈ RQ·T×P ·T (8)

Similar to the source signals we define

Xq = [ xq(0) · · · xq(T −1) ]
T

, 1≤ q ≤Q (9)
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Figure 1: Mixing process for underdetermined BSS withQ = 2,
P = 3

and summarize theXq by

X =

 X1
...

XQ

 ∈ RQ·T (10)

This results in the compact description of the mixing process for
one frame by

X = AS +N (11)

as illustrated in Fig.1. N ∈RQ·T is derived fromn(t) in a similar
way asX is derived fromx(t).

The final goal in BSS is the estimation of signalsY that re-
semble the original signalsS as closely as possible. Since only
the mixed signals are available, this is at best possible up to arbi-
trary permutation and scaling. With (over-) determined BSS it is
sufficient to estimate the mixing matrixA or its inverse. Since the
mixing matrix is square and therefore invertible (assuming thatA
is non-singular), the inverse can be used to separate the signals. In
contrast to (over-) determined BSS, here the estimation of the mix-
ing matrix A is not sufficient. Even ifA is available, estimating
the original signals from the mixtures poses a problem on its own,
sinceA cannot be simply inverted. In the following we concentrate
on estimating the original signals and assume that the mixing matrix
is known or can otherwise be estimated [2, 14, 15, 16].

3. MODELS

The most general approach for estimating the unknown source sig-
nals is based on Bayesian inference. It yields the posterior distri-
bution p(θ|X) of the desired parametersθ (here: source signals)
by accounting for their prior distributionp(θ) and the likelihood
p(X|θ) of the observed dataX (here: mixed signals). From Bayes’
rule we obtain [12]

p(θ|X)∝ p(X|θ) ·p(θ). (12)

So far, nearly all approaches to underdetermined BSS assume
independent and identical prior distributions. In contrast, we pro-
pose in this section two multivariate priors tailored to speech sig-
nals. We also define the likelihood derived from the commonly as-
sumed Gaussian sensor noise model.

In both speech models we make the common assumption that
the speech signals are mutually independent.

p(S) =
∏
p

p(Sp) (13)

We further assume that the speech signal is approximately station-
ary within a frame of appropriately chosen lengthT .

In our first speech model, we model each frameSp by a zero
mean, multivariate Student’st distribution

p(Sp) = ST (Sp|αp,Σp) (14)

with degrees of freedomαp and scaleΣp. Modeling the speech
signal by a multivariate Student’st distribution has several advan-
tages:
• It is a good approximation of real speech signals. This does not

just follow from experimental results but is also based on results
with spherically invariant random processes (SIRPs) [3] and the
univariate Student’st distribution [5].

• The multivariate Student’st distribution can be expressed as a
multivariate Gaussian mixture model (MGM) with an infinite
number of mixtures [1] as follows

ST (Sp|αp,Σp) = (15)∫
N (Sp|0,Rp) · IW(Rp|αp,Σp)dRp.

N andIW denote a multivariate Gaussian and inverse Wishart
distribution, respectively. According to this relation, the multi-
variate Student’st distribution is the marginal distribution ob-
tained from the joint distribution of the speech signal and its au-
tocorrelation. This leads to a hierarchical Bayesian model with
a multivariate Gaussian distribution for the speech signalSp

p(Sp|Rp) =N (Sp|0,Rp) (16)

and an inverse Wishart distribution for the autocorrelation ma-
trix Rp

p(Rp|αp,Σp) = IW(Rp|αp,Σp). (17)

The expected value ofRp is [8]

E {Rp}=
1

αp−T −1
Σ−1

p . (18)

The hierarchical model will be used in Sec.4 to obtain condi-
tional posterior PDFs.

• The inverse Wishart distribution is the conjugate prior of a mul-
tivariate Gaussian likelihood with respect to its correlation ma-
trix [7]. This means that the corresponding posterior distribution
is again an inverse Wishart distribution, which is also exploited
in Sec.4.
The degrees of freedomαp and the scaleΣp in (17) can either

be considered deterministic or random. We summarize all parame-
ters in the parameter vectorθ and obtain the joint prior distribution
as

pθ(θ) = p(S,R,A,σ2,α,Σ) (19)

= p(S|R)p(R|α,Σ)p(A)p(σ2)p(α)p(Σ) (20)

with α = [ α1 · · · αP ]T . The relation between the different
variables is illustrated in Fig.2.

As a special case of the first speech model we propose an an-
alytically feasible, multivariate Gaussian prior as second speech
model

p(Sp) = lim
αp→∞

ST (Sp|αp,Σp) =N (Sp|0,Rp) (21)

with zero mean vector and covariance matrixRp.
For deriving the likelihood we assume additive white Gaussian

noise with identical varianceσ2 across all sensors. Based on the
mixing process (11), this assumption results in the Gaussian likeli-
hood

p(X|A,S,σ2) =N (X|AS,σ2). (22)
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Figure 2: Graphical model

4. BAYESIAN INFERENCE

The general goal in Bayesian inference is to estimate the posterior
PDF of unknown parameters based on the available data. Except for
few special cases like the Gaussian speech model (21) with Gaus-
sian likelihood (22), the posterior cannot be derived in closed-form.
Instead, it requires numerical methods based for example on Monte
Carlo techniques [4]. Based on our multivariate models in the pre-
vious section, we derive in the following MMSE estimates of the
sources in closed-form and by numerical approximation. Further
details are provided in the appendix.

4.1 Multivariate Student’s t prior

In order to estimate the sources based on the multivariate Student’s
t prior (14), we employ a Gibbs sampler, which is a Monte Carlo
technique. In contrast to our multivariate approach, the Gibbs sam-
pler was applied in [5] to an i.i.d. speech model based on a univari-
ate Student’st distribution.

4.1.1 Basic idea

The Gibbs sampler approximates the posterior PDF by sampling
iteratively from appropriately chosen conditional PDFs. In fact, the
conditional PDFs form a first-order Markov chain, whose stationary
PDF is the desired posterior PDF [4, 8].

Let θ = {θ1, . . . ,θK} denote the unknown parameters with
prior PDF pθ(θ) and X the available data with likelihood
pX|θ(X|θ). We further defineθ−i as summarizing all parameters
without parameterθi. For the Gibbs sampler we need the condi-
tional PDFsp(θi|θ−i,X), which can be shown to be [5]

p(θi|θ−i,X)∼ pθ(θ)pX|θ(X|θ) (23)

Once they are derived, we can sample iteratively from each condi-
tional PDF using the previous samples as summarized in Algorithm
1. As soon as a sufficient number of samples is drawn, they ap-

Algorithm 1 : General Gibbs sampler

Initialize θ (e.g. randomly) ;
for k=1..K do

for i do
θ

(k+1)
i ∼ p(θi|θ

(k,k+1)
−i ,x);

end
end

proximate the posterior PDF. They can further be used to calculate
point estimatesY (MAP, MMSE, ...) of the original signalsS. In
order to avoid transient effects a certain number of initial samples
should be discarded [9, 13].

4.1.2 Implementation

We now derive the conditional PDFs for our specific problem based
on the multivariate Student’st speech model in Sec.3.

For the conditional PDF of the speech signal we obtain

p(S|θ−S ,X) ∝ p(S|R) ·p(X|A,S,σ2) (24)

∝ N (S|0,R) ·N (X|AS,σ2) (25)
∝ N (S|µS ,ΣS) (26)

with

ΣS =

(
R−1 +

1

σ2
AT A

)−1

(27)

and

µS =
(
σ2R−1 +AT A

)−1
AT X. (28)

For the conditional PDF of the autocorrelation we obtain

p(R|θ−R,X) ∝ p(S|R) ·p(R|α,Σ) (29)

∝
∏
p

N (Sp|0,Rp) · IW(Rp|αp,Σp)

∝
∏
p

IW
(

Rp|αp +1,
(
SpSTp +Σ−1

p

)−1
)

To successfully implement this Gibbs sampler, appropriate
choices for the degrees of freedomαp and the scaleΣp are nec-
essary. It is common in Bayesian inference to manually tune the
degrees of freedom. Usually there is also sufficient prior data avail-
able to train the scale (e.g. speaker adaptation for speech recogni-
tion). Here we face the problem, that we do not have sufficient prior
data. We consider the following options:
• We could consider the scale as random variable as well and

choose an uninformative prior (e.g. Jeffrey’s prior, uniform
prior, ...). So far experiments with uninformative priors did not
yet lead to reasonable results. Therefore, we don’t consider this
option here.

• Knowing that the choice of the scaleΣp directly influences the
autocorrelation by (18), we can set it to a specific value, deter-
mined for example by some preprocessing (e.g.`1-norm mini-
mization [17]) as detailed in the next section.

4.2 Multivariate Gaussian prior

Plugging the Gaussian prior (21) and the likelihood (22) in (12) we
obtain for the Gaussian posterior similar to (24)

p(S|X) ∝ p(S|R) ·p(X|A,S,σ2) (30)
∝ N (S|µS ,ΣS).

with ΣS andµS given by (27) and (28), respectively.
Since the MMSE estimate of a normally distributed random

variable is its mean, the resulting estimate of the sources is

Y =
(
σ2R−1 +AT A

)−1
AT︸ ︷︷ ︸

=W

X. (31)

The unmixing filterW is a generalized inverse modified by the
autocorrelation matrix. The influence of the autocorrelation matrix
R is determined by the noise varianceσ2. Without modification
by the autocorrelation matrix (31) could not be determined, since
AT A is a singular matrix.
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5. AUTOCORRELATION

For the proposed speech models the autocorrelation plays a crucial
role. With the multivariate Gaussian model, the estimate is used
directly. With the multivariate Student’st model, the estimate can
be used to set the scaleΣp, if it is treated as a deterministic value.
It then determines the expected value of the autocorrelation. There-
fore, for high quality separation in terms of interference suppression
and signal distortion [6] we need a good estimate of the autocorrela-
tion. In this section we will discuss possible options for estimating
the autocorrelation. In general, we can distinguish between non-
parametric and parametric approaches.

5.1 Non-parametric estimation

Non-parametric estimation has the advantage that no assumption
about the structure is necessary. For our purpose with only a limited
numberT of samples of the signal in question available, we choose
a biased estimation technique [10]. It guarantees that the estimated
autocorrelation is positive semi-definite. For a signal frames(t),
0≤ t≤ T −1 the biased autocorrelation estimate is given by

r(τ) = E {s(t)s(t+ τ)} (32)

≈ 1

T

T−τ−1∑
t=0

s(t)s(t+ τ) (33)

5.2 Parametric estimation

Non-parametric estimation of the autocorrelation suffers from an in-
sufficient amount of data compared to the number of parameters (if
we define all time lags of the autocorrelation as parameters). This
results in high variance and low resolution [11]. In general, it is de-
sirable to reduce the number of parameters by an appropriate para-
metric model that exploits the inherent structure.

Based on the harmonicity of speech we propose approximating
the biased autocorrelation byM harmonic, decaying cosine func-
tions.

rp(τ)≈

(
M∑

m=1

γm,p cos(p ·f0,p · τ)

)
exp(−βpτ) (34)

Here,γm,p denotes the gain of each cosine,f0,p is the fundamental
frequency andβp is the decay factor. This reduces the number of
parameters toM +2 for each source.

5.2.1 Least square estimation

If we have access to the autocorrelation that we want to approxi-
mate, we can use a least square approach to estimate the parameters.
We apply this method to the following scenarios.
• To explore the possibilities of the parametric approach, we can

use the autocorrelations of the original signals to estimate the
parameters.

• Other parameter estimation methods might need to be initial-
ized. Then we can use initial estimates of the sources (e.g.`1-
norm minimization [17]) and use their autocorrelations.

• Linear mixtures of mutually independent signals have the prop-
erty, that their autocorrelations are a linear mixture of the auto-
correlation of the original signals.

rxq(τ) = E {xq(t)xq(t− τ)} (35)

= E


∑

p

Ãqpsp(t)

 ·

∑
p

Ãqpsp(t− τ)


= E

∑
p

Ã2
qpsp(t)sp(t− τ)

 (36)

=
∑
p

Ã2
qpE {sp(t)sp(t− τ)} (37)

=
∑
p

Ã2
qprsp(τ) (38)

If we assume, that the fundamental frequencyf0,p is different
for each speaker, we can estimate the parameters from the mix-
tures for each source in parallel.

In each scenario a non-parametric estimation is the basis for the
parameter estimation. As a general least square cost function for all
scenarios we propose

J (γ,β,f0) =
∑

q
∑
τ

(rq(τ)− (39)

∑
p

Ã2
q,p

((
M∑

m=1

γmp,p cos(m ·f0,p · τ)

)
exp(−βpτ)

)2

6. EXPERIMENTAL RESULTS

We performed experiments with three speech signals (two male, one
female) of1.62 seconds (8kHz sampling rate). We generated two
instantaneous mixtures with the mixing matrix

Ã =

[
1 1 1

1.3 −0.9 0.8

]
(40)

and assumed that the mixing matrix is available. The signals were
processed in frames ofT = 256 samples and shifted by64 samples.
No noise was added to the mixtures, but the noise variance was set
to σ2 = 10−4. This led to a good influence of the autocorrelation
matrixR. For approximations of the autocorrelation we setM = 2.
The sources had equal variance of0.0037. We compared the
following approaches:

L1 Separating the mixtures bỳ1-norm minimization in
the frequency domain, which is based on a univariate
speech model [17].

L1G Using the results from L1 to estimate the autocorre-
lation. This estimate was used to further enhance the
separated signals by the Gibbs sampler (24)-(29) (K =
1000 iterations).

OG Estimating the signals with the Gibbs sampler (24)-(29)
(K = 10 iterations), whereby the autocorrelation was
estimated from the original signals (33).

OI With the autocorrelation estimated from the original
signals (33), the signals were obtained with the modi-
fied generalized inverse (31).

OAI Estimating the signals with the modified generalized
inverse (31), whereby each autocorrelation was ap-
proximated by two harmonic, exponentially weighted
cosines based on the original signals (34).

OSI Estimating the signals with the modified generalized in-
verse (31), whereby the autocorrelation matrix was a
diagonal matrix filled with the first lag of the autocorre-
lation of the original signals (33).

MAI Estimating the signals with the modified generalized in-
verse (31), whereby the autocorrelation was approxi-
mated directly from the mixtures (34).

For the evaluation of the separation results we used the signal-
to-distortion ratio (SDR), signal-to-interference ratio (SIR) and
signal-to-artifact ratio (SAR) as defined in [6]. The averaged results
of the different approaches are shown in Table1.

7. CONCLUSION

The experimental results in Table1 together with subjective eval-
uation suggest that knowing the autocorrelation together with the
mixing matrix is sufficient to perform high quality underdetermined
source separation in noiseless environments (OG and OI compared
to L1G, OSI and MAI). In other words, the problem of underdeter-
mined source separation can be reduced to the estimation of the un-
derlying autocorrelations once the mixing matrix is available. The
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Method SDR SIR SAR
L1 9.28 14.84 11.79
L1G 5.29 17.65 7.25
OG 12.3 35.61 12.56
OI 18.21 34.33 18.51
OAI 10.42 20.75 11.40
OSI 11.11 18.08 12.89
MAI 3.45 13.63 5.83

Table 1: Experimental results

proposed parameterization of the autocorrelation did not yet lead
to satisfying results (OAI, MAI). Therefore, either better autocorre-
lation models or improved non-parametric estimation methods are
necessary.

The experimental results obtained by the MMSE approach OI
resemble the results of the Gibbs sampler OG. This suggests that
the exact prior distribution of the sources plays only a minor role
as long as the autocorrelation is taken into account. Therefore, the
comparatively easy and fast solution given by (31) might provide a
basis for algorithms that yield better autocorrelation estimates and
eventually underdetermined source separation.

Possible options for improving the autocorrelation estimate in-
clude linear prediction based models and independent component
analysis (ICA) techniques. Linear prediction has already proven
in speech coding, that it allows very compact yet high quality de-
scriptions of speech signals. ICA exploits the statistical indepen-
dence between the sources and might be helpful for estimating the
involved parameters.

A. CONDITIONAL PDFS FOR GIBBS SAMPLER

• Conditional PDF of speech signal

p(S|θ−S ,X)∝ p(S|R) ·p(X|A,S,σ2) (41)

∝ N (S|R) ·N (X|AS,σ2)

∝ exp

(
−1

2
ST R−1S

)
·

exp

(
−1

2
(X−AS)T

I

σ2
(X−AS)

)

∝ exp

−1

2

ST
(

R−1 +
1

σ2
AT A

)
S︸ ︷︷ ︸

:=STΣ−1
S S

−

−ST
1

σ2
AT X︸ ︷︷ ︸

:=Σ−1
S µS

− 1

σ2
XT AS +

1

σ2
XT X




= N (S|µS ,ΣS)

with ΣS andµS given by (27) and (28), respectively.
• Conditional PDF of autocorrelation

p(R|θ−R,X)∝ p(S|R) ·p(R|α,Σ) (42)

∝
∏
p

N (Sp|0,Rp) ·
∏
p

IW(Rp|αp,Σp)

∝
∏
p

N (Sp|0,Rp) · IW(Rp|αp,Σp)

∝
∏
p

|Rp|−
1
2 exp

(
−1

2
STp R−1

p Sp

)
·

|Rp|−
1
2 (αp+T+1) exp

(
−1

2
tr
(
R−1

p Σ−1
p

))
∝

∏
p

|Rp|−
1
2 (αp+T+2) ·

exp

(
−1

2
tr
(
R−1

p SpSTp
)
− 1

2
tr
(
R−1

p Σ−1
p

))
=

∏
p

IW
(

Rp|αp +1,
(
SpSTp +Σ−1

p

)−1
)
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