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ABSTRACT
Estimating the frequency of sinusoidal components is

a key problem in many applications, such as in sinusoidal
sound modeling, where the estimation has to be done with
a low complexity, on short-term spectra. Many estimators
have therefore been proposed in the literature. Among these,
we focus in this paper on a class known as the “phase-based”
estimators. Despite their different theoretical backgrounds,
we prove that four of these estimators are equivalent, at least
in theory. We also demonstrate that these estimators perform
roughly similarly in practice, however small differences re-
main which are mainly due to numerical properties of the
mathematical operators used in their implementations.

1. INTRODUCTION

Among numerous other applications, sinusoidal sound mod-
eling requires the estimation of the frequencies of sinusoidal
components. The inherent complexity of the analyzed sound
signals together with the need for real-time applications often
impose the use of methods based on short-term spectra, such
as those obtained with the Short-Time Fourier Transform
(STFT), often implemented using the Fast Fourier Transform
(FFT).

A first class of these estimators considers some values
of the magnitude spectrum around a frequency bin to fit a
polynomial. The location of the maximum of this polyno-
mial gives the precise frequency of the sinusoidal component
[1, 2, 3]. In this paper, we focus on a second class of estima-
tors which explicitly use the phase of the FFT to estimate
the frequency: the reassignment method [4], the difference
method [5] commonly used in the phase-vocoder approach,
and the derivative estimator [6]. This last estimator, origi-
nally proposed in [7], has been enhanced in [8] to overcome
a loss of precision in the high frequencies underlined in [9].
This enhanced estimator will be named the trigonometric es-
timator in the remainder of this paper.

After a brief presentation of sinusoidal modeling in Sec-
tion 2, the four phase-based estimators are reviewed in Sec-
tion 3 and their theoretical equivalence is demonstrated.
First, the equivalence of the reassignment estimator and the
derivative one is proven in the case of continuous time. Next,
a trigonometric interpretation of the difference estimator and
the derivative one demonstrates their equivalence in the dis-
crete case.

The numerical experiments presented in Section 4 glob-
ally confirm these results. However, practical implementa-
tions of these estimators lead to non negligible differences
when compared to the Cramér-Rao Bound (CRB). To eval-
uate and explain these differences, we first compare these

estimators in the case of a complex exponential signal and
also in the case of a real sinusoid since real signals are more
commonly used in musical applications.

2. SINUSOIDAL MODELING

Additive synthesis is the original spectrum modeling tech-
nique. It is rooted in Fourier’s theorem, which states that any
periodic function can be modeled as a sum of sinusoids at
various amplitudes and harmonic frequencies. For stationary
pseudo-periodic sounds, these amplitudes and frequencies
continuously evolve slowly with time, controlling a set of
pseudo-sinusoidal oscillators commonly called partials. This
is the well-known McAulay-Quatieri representation [10] for
speech signals, also used by Serra [3] in the context of musi-
cal signals.

The audio signal s can be calculated from the additive
parameters using Equations (1) and (2):

s(t) =
P

∑
p=1

Ap e jφp(t) (1)

φp(t) = φp(0)+
∫ t

0
ωp(u) du i.e. ωp(t) =

d
dt

φp(t) (2)

where P is the number of partials and the parameters of the
sinusoidal model are ωp, Ap, and φp, which are respectively
the instantaneous frequency, amplitude, and phase of the p-th
partial.

In the real case, the signal s consists of a sum of (real)
sinusoids:

s(t) =
P

∑
p=1

Ap cos(φp(t)). (3)

In fact, each sinusoid consists of two complex exponentials,
since we have:

cos(x) =
(
e+ jx + e− jx)/2. (4)

The basic method used for estimating the model param-
eters is the Short-Time Fourier Transform (STFT), where a
sliding analysis window w is used to obtain short-term spec-
tra:

Sw(ω, t) =
∫ +∞

−∞
s(τ) w(τ− t) e− jω(τ−t) dτ. (5)

Then the sinusoidal components are searched in each spec-
trum, using specific estimators.

In this paper, we will focus on the estimation of the fre-
quency, which will be considered as constant during the anal-
ysis window w.
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3. PHASE-BASED ESTIMATORS

The (short-term) spectra obtained from the STFT with Equa-
tion (5) consist of complex values, which in the polar repre-
sentation are:

S(ω, t) = A(ω, t) e jφ(ω,t) (6)

and in the present study we will use only the phases:

φ(ω, t) = ∠S(ω, t) = ℑ(log(S(ω, t))) (7)

(∠x and ℑ(x) denoting respectively the angle and imaginary
part of the complex number x).

3.1 Reassignment Method
In usual time-frequency representations, the values obtained
when decomposing the signal on the time-frequency atoms
are assigned to the geometrical center of the cells (center
of the analysis window and bins of the Fourier transform).
Auger and Flandrin propose in [4] to assign each value to the
center of gravity of the cell’s energy. The method uses the
knowledge of the analytic first derivative w′ of the analysis
window w in order to adjust the frequency inside the FFT
bin.

More precisely, if we consider Equations (5) and (7), we
can compute:

ω̂ =
∂
∂ t

φ(ω, t) = ℑ
(

∂
∂ t

log(Sw(ω, t))
)

= ℑ




∂
∂ t

(∫ +∞
−∞ s(τ) w(τ− t) e− jω(τ−t) dτ

)

Sw(ω, t)




= ℑ
(

jωSw(ω, t)−Sw′(ω, t)
Sw(ω, t)

)

that is

ω̂ = ω−ℑ
(

Sw′(ω, t)
Sw(ω, t)

)
. (8)

In the special case of a single sinusoid (P = 1 in Equation
(1)), we have ω̂ = ω1. In the general case of multiple si-
nusoids, if we consider the spectrum at a frequency ω close
to ωp, we can neglect the influence of the other frequencies,
since the analysis window is band limited, and thus we have
ω̂ ≈ ωp for ω ≈ ωp. The frequency ω̂ gives indeed an ex-
cellent estimate of ωp when estimated at the frequency of the
DFT bin nearest to ωp, where the p-th spectral peak is found
in the magnitude spectrum. The reassignment method is the
first estimator we consider in our study, or more precisely its
discrete version:

ω̂ =
k
N
−ℑ

(
Sw′ [k,n]
Sw[k,n]

)
(9)

where k is the DFT bin number of the local maximum in
the magnitude spectrum for the sinusoidal component under
consideration, and n is the sample index corresponding to the
time where this N-point DFT is computed.

3.2 Derivative Method
We have shown in [11, 7] that it is also possible to greatly im-
prove the precision of the classic Fourier analysis by taking
advantage of the first d derivatives of the signal itself. For
d = 1, this method is also known as the derivative algorithm.

3.2.1 Continuous Case

In the case of continuous time, from Equation (1), the ana-
lytic derivative of the signal s is given by:

s′(t) =
d
dt

s(t)

=
P

∑
p=1

d
dt

Ap e jφp(t) + j
P

∑
p=1

Ap
d
dt

φp(t) e jφp(t).

If the amplitudes are constant, their derivatives are zero, and
since the derivative of the phases are the frequencies, with
Equation (2), we have:

s′(t) = j
P

∑
p=1

Ap ωp e jφp(t). (10)

In the special case of a single sinusoid (P = 1), we get
s′(t) = jω1s(t), thus S′(t) = jω1S(t) provided that ω1 is con-
stant. In the general case of multiple sinusoids, the same
considerations as for the reassignment method lead to:

S′(ω, t) = jωpS(ω, t) for ω ≈ ωp (11)

thus we have

ω̂ = ℑ
(

S′w(ω, t)
Sw(ω, t)

)
(12)

which is the continuous version of the derivative method,
proposed in [7].

In order to prove the equivalence of this method and the
reassignment method, we introduce θ = τ − t which gives
another expression for the STFT:

Sw(ω, t) =
∫ +∞

−∞
s(t +θ) w(θ) e− jωθ dθ (13)

from which we can derive, as we did for the reassignment to
obtain Equation (8):

ω̂ = ℑ
(

∂
∂ t

log(Sw(ω, t))
)

= ℑ

(
∂
∂ t

(∫ +∞
−∞ s(t +θ) w(θ) e− jωθ dθ

)

Sw(ω, t)

)

= ℑ
(

S′w(ω, t)
Sw(ω, t)

)

that is exactly Equation (12), thus the reassignment and
derivative methods are equivalent, at least in theory, since
they are two different mathematical formulations of the same
physical quantity.

3.2.2 Discrete Case

However, in practice, the signal s is discrete and the deriva-
tive of the signal is unknown and must be approximated. In
[7], it is proposed to consider the difference s− as an approx-
imation of the derivative s′. More precisely, we have:

s[n] = s(n/Fs) (14)

s−[n] = (s[n+1]− s[n])Fs (15)
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where Fs is the sampling frequency. In fact, s− defines a low-
pass filter of the signal s whose gain is 2Fs sin(ω/2), and we
derived in [6] the derivative estimator in the discrete case:

ω̂ =
1
π

arcsin
(

S−[k,n]
2FsS[k,n]

)
. (16)

However, the following identity:

S[k,n+1]+S[k,n]
2

−S[k,n] =
S[k,n+1]−S[k,n]

2

and simple geometric considerations lead us to consider a
right-angled triangle, see Figure 1 (lower triangle, delimited
by 3 dots). Another of its angles measures θ = ∆φ /2 radians.
Simple trigonometric considerations give:

cos(θ) =
S[k,n+1]+S[k,n]

2
/S[k,n]

sin(θ) =
S[k,n+1]−S[k,n]

2
/S[k,n]

that is

∆φ = 2arccos
(

S[k,n+1]+S[k,n]
2S[k,n]

)

∆φ = 2arcsin
(

S[k,n+1]−S[k,n]
2S[k,n]

)
.

Considering that the frequency is constant during the time-
interval between two successive short-term spectra, with a
hop size of H samples, Equation (2) shows that the frequency
can be estimated from the phase difference:

ω̂ =
1

2πH
∆φ (17)

which gives, for H = 1:

ω̂− =
1
π

arcsin
(

S[k,n+1]−S[k,n]
2S[k,n]

)
(18)

ω̂+ =
1
π

arccos
(

S[k,n+1]+S[k,n]
2S[k,n]

)
. (19)

The ω̂− estimator, introduced in [6], will be the second
estimator considered in our study. We introduced recently in
[8] the ω̂+ estimator in order to improve the precision of the
previous one in the high frequencies. The resulting estimator,
called the trigonometric estimator, is the third estimator we
consider in this paper:

ω̂ =
{

ω̂− if k/N < 0.25
ω̂+ otherwise. (20)

3.3 Difference Method
The difference method is used in the classic phase vocoder
approach [5]. This is a straightforward application of Equa-
tion (17), thus again considering that the frequency is con-
stant during the time-interval between two successive short-
term spectra, which is especially the case if they are sepa-
rated by only 1 sample. The frequency is then estimated di-
rectly from the phase difference ∆φ (see Figure 1) by taking

S[k,n+1]+S[k,n]
2

S[k,n]

S[k,n+1]

∆φ

θ = ∆φ
2

ℑ

ℜ

S[k,n+1]−S[k,n]
2

Figure 1: Vector relationships for phase difference and dis-
crete derivative methods. S[k,n] is the spectrum at DFT bin
number k and time index n, and ∆φ is the phase difference
between two consecutive (short-term) spectra.

care of unwrapping the phase so that this difference is never
negative. The resulting estimator, known as the difference
estimator, is the fourth and last one we consider in our study:

ω̂ =
1

2π
(∠S[k,n+1]−∠S[k,n])unwrap. (21)

Figure 1 shows that this estimator is equivalent to the pre-
ceding one in the discrete case, at least in theory. Next sec-
tion will study the relationships among all these estimators
on a more practical (implementation) point of view.

4. PRACTICAL EXPERIMENTS

To compare the estimators reviewed in the previous section,
we consider in turn a complex and a real signal composed of
a periodic part x with amplitude unity and constant frequency
embedded in noise y. The power of the noise is chosen to
achieve a desired Signal-to-Noise Ratio (SNR) expressed in
decibels:

SNR = 10log10

(
var(x)
var(y)

)
. (22)

In the experiments, the SNR ranges from −20 dB to 100 dB.
We use frames of N = 128 samples (Fs = 4 kHz) and con-

sider 400 different (normalized) frequencies ranging from 0
to 0.5. These bounds are exclusive, so that the first evaluated
frequency is 0.0025. For each frequency, 30 different phases
are evaluated from 0 to 2π . At each evaluation, the noise is
randomized. The (periodic) Hann window is used implicitly
prior to any DFT. For all the tested methods, the detection is
operated by picking the greatest local maximum in the power
spectrum.

4.1 Complex Case
When evaluating the performance of an estimator in terms
of variance of the estimation error, an interesting element
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to compare with is the Cramér-Rao Bound (CRB). This
bound is defined as the limit to the best possible performance
achievable by an estimator given a dataset.

Let us consider a complex exponential x (of amplitude 1)
in a Gaussian complex noise y:

x[n] = e j2πωn+Φ and y[n] = 10−SNR/20z[n] (23)

where ω is the normalized frequency and z is a Gaussian
noise of variance 1. The variance of the signal part x is 1, and
the variance of the noise part y is var(y) = σ2 = 10−SNR/10.
The analyzed signal is s = x + y. For the case of the estima-
tion of the frequency ω of a complex exponential in noise,
the lower Cramér-Rao bound is [12]:

CRBc =
6σ2

a2N(N2−1)
=

6
N(N2−1)

10−SNR/10 (24)

where a is the amplitude of the exponential (here a = 1), and
the SNR is given by Equation (22). We can easily show that,
in the log scales, the CRB in function of the SNR is a line of
slope −1.

As asserted by the theoretical derivations of Section 3,
most of the methods perform similarly, see Figure 2(a). More
precisely, the difference estimator performs slightly better
than the trigonometric estimator. A loss of performance at
high SNR can be observed for the reassignment due to a bias
of the frequency estimate [9]. As as far as the entire fre-
quency range is concerned, the derivative method performs
badly due to a loss of precision in the high frequencies, see
Figure 2(b). This loss of precision can be explained by the
numerical imprecision of the arcsin function of Equation (16)
when the argument is close to zero, as shown in [8].

4.2 Real Case
Musical applications consider real sinusoids rather than com-
plex exponentials. We then consider in this section the signal
s = x+y made of a sinusoid x (of amplitude 1) in a Gaussian
noise y:

x[n] = sin(2πωn+Φ) and y[n] =
1√
2

10−SNR/20z[n]. (25)

We use the 1/
√

2 normalizing factor to ensure the validity
of Equation (22), because in the real case the variance of the
sinusoid is 1/2, and we still consider, by definition, var(y) =
σ2. Therefore, for the case of the estimation of the frequency
ω of a real sinusoid in noise, the lower Cramér-Rao bound
is shown to be twice the CRB in the complex case (CRBr =
2CRBc), see [13].

The spectrum of a real sinusoid is made of two Dirac’s
impulses, one located at frequency ω and the other at −ω ,
see Equation (4), and the spectrum of the sampled signal is
Fs-periodic. As a consequence, the more the frequency of the
analyzed sinusoid is close to 0 or Fs/2, the more the interfer-
ence between the two complex exponentials is pronounced.
This can greatly disturb the estimators, thus changing their
relative performances in the real case.

Therefore, when the limited frequency range is consid-
ered (see above), the results are equivalent to the complex
case, see Figure 3(a). If the whole frequency range is consid-
ered, the performances are limited by the interference phe-
nomenon, so that the squared error is held asymptotically
constant at SNR higher than 10 dB, see Figure 3(b).
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(a) Complex case: short frequency range.

−20 0 20 40 60 80 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Signal to Noise Ratio (SNR)

Fr
eq

ue
nc

y 
Er

ro
r

(b) Complex case: entire frequency range.

Figure 2: Performance of the tested estimators for the
analysis of a complex exponential with frequency lying in
the ]0.24,0.25[ normalized frequency range (a), and in the
]0,0.5[ range (b): the reassignment method (dotted line with
∗), the difference estimator (dash-dotted line with ◦), the
derivative estimator (dashed line with ×), and the trigono-
metric estimator (solid line with ¦). The CRB is plotted with
a double solid line.

We see that the difference and reassignment methods per-
form roughly equally, slightly worse than the trigonometric
estimator. This is due to the fact that the first DFT bin S[0]
is by definition purely real when the signal is real. Conse-
quently, the difference and reassignment estimators will al-
ways estimate a frequency zero if the frequency of the ana-
lyzed sinusoid falls into this bin, i.e. ω < 1/N, see Figure
4.

5. CONCLUSION

In this article, we have demonstrated the theoretical equiv-
alence of phase-based estimators. This equivalence was
guessed in practice by Keiler and Marchand in [14], and
partly demonstrated in theory by Hainsworth [15] during his
Ph.D. Numerical experiments confirmed this result although
slight differences were observed, which were mainly due to
numerical imprecision. The reassignment estimator should
therefore be avoided due to a loss of precision at high SNR
and the trigonometric method should be preferred when con-
sidering real signals with low-frequency components.
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(a) Real case: short frequency range.
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(b) Real case: entire frequency range.

Figure 3: Performance of the tested estimators for the anal-
ysis of a real sinusoidal signal with frequency lying in
the ]0.24,0.25[ normalized frequency range (a), and in the
]0,0.5[ range (b): the reassignment method (dotted line with
∗), the difference estimator (dash-dotted line with ◦), the
derivative estimator (dashed line with ×), and the trigono-
metric estimator (solid line with ¦). The CRB is plotted with
a double solid line.
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Figure 4: Performance of the tested estimators at SNR=100
dB versus the frequency of the analyzed sinusoid: the re-
assignment method (dotted line), the difference estimator
(dash-dotted line), the derivative estimator (dashed line),
and the trigonometric estimator (solid line). The CRB is plot-
ted with a double solid line.
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