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ABSTRACT 
The problem of estimating the phase of (possibly amplitude 
modulated) sinusoidal signals arises in a variety of signal 
processing applications [1]. A closed form expression for the 
maximum likelihood (ML) estimator exists which achieves 
the best possible performance given by the Cramer-Rao 
lower bound (CRLB) asymptotically. However, due to the 
nonlinear nature of the problem, below a certain level of 
signal-to-noise ratio (SNR), the so called threshold effect 
occurs, and the performance of the estimator decreases 
quickly. In this paper, we investigate this effect, together 
with the influence of windowing and amplitude modulation 
on the threshold using the unmodified estimator. 

1. INTRODUCTION 

Nonlinear estimators (often derived through the ML princi-
ple [2]) exhibit a threshold effect. That is, below a certain 
level of SNR the performance of the estimator departs from 
the CRLB due to the occurrence of so called outliers. It is of 
practical interest to determine this level in order to assess the 
performance of an estimator. For example, receivers in 
communication systems are said to operate above or below 
threshold. 
This paper deals with the threshold effect in sinusoidal 
phase estimation, and the influence of windowing and am-
plitude modulation on the threshold as well as on the estima-
tion performance below threshold. Furthermore, the inherent 
bias of the ML phase estimator, as derived in [3], is dis-
cussed. It is shown that this bias stems from the circular 
nature of the phase estimate and that the phase estimator can 
be considered unbiased depending on the application. The 
following signal will be investigated: 
 ( ),π2cos][ 00 φψ += nAns  (1) 

with x[n] denoting the sampled data in three different cases: 
The case of an unmodified signal model (2) in additive white 
Gaussian noise (AWGN) v[n] with variance  σ 2 and zero 
mean is given by 
 ].[][][ nvnsnx +=  (2) 

The windowed case corresponds to 
 ],[][][][][ nvnwnsnwnx +=  (3) 

and 

 ][][][][ nvnsnanx +=  (4) 

corresponds to the amplitude modulated case. Hereby, N 
samples are obtained with constant sample rate Ts, A denotes 
the amplitude (A > 0), ψ0 = f0Ts denotes the normalized fre-
quency, and φ0 the phase (−π ≤ φ0 < π). In this work, we in-
vestigate the case of unknown A, a[n] and φ0, but known ψ0. 
In the case of unknown ψ0, the threshold effect for phase 
estimation is influenced by the frequency estimation thres-
hold and will be subject of further work. 
Data windows w[n] are typically used if s[n] consists of 
p > 1 sinusoids, i.e. 
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π2cos][ φψ  (5) 

to suppress interference, but also to suppress interference in 
the single sinusoid case due to the real valued signal model. 
See [4] for some general rules a function must fulfill to be 
called a windowing function. Amplitude modulated sinu-
soids typically occur e.g. in communication or measurement 
systems, with the amplitude modulation modelled through 
the real valued, unknown function a[n], 0 ≤ a[n] ≤ 1. For the 
signal models (2), (3) and (4), the estimator  
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will be considered [2]. Note that only for the signal model 
(2) above estimator is an (approximate) ML estimator. For 
the signal model (3), a closed-form expression of the resul-
tant mean-square error (MSE) of the phase estimate above 
threshold applying (6) has been derived in [5]. Signal model 
(4) will be considered here since although an optimum para-
meter estimator for the case of amplitude modulated sinu-
soidal signals does exist [6], (6) is often used in practice 
since it is also a consistent estimator [6]. For the signal 
models (2), (3), and (4) in the case of multiple sinusoids (5), 
the estimator (6) is only consistent if the frequencies are 
spaced far apart, i.e.  

 .for1 ki
Nki ≠>>−ψψ  (7) 

In the following derivations, we generally assume large 
enough N for (7) to be fulfilled. Furthermore, in the case of 
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amplitude modulated multiple sinusoids, (6) is only a con-
sistent estimator if the modulating function does not disturb 
the orthogonality of the individual cosines.  

2. DERIVATION OF THE ESTIMATION MSE 

 
2.1 CRLB, THRESHOLD EFFECT  

 
ML estimators are known to result in asymptotically unbi-
ased, normal distributed estimates [2], i.e. 
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with 
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denoting the asymptotic estimation variance in case of signal 
model (2). The SNR is defined as η = A2/(2σ 2). Eq. (9a) is 
valid for signal model (2) only, since for signal models (3) 
and (4) (6) is a least squares estimator only. Also in these 
cases the phase estimates are asymptotically distributed ac-
cording to (8), but with increased estimation variances. 
It has been shown in [5] that for signal model (3) the asymp-
totic estimation variance is given by 
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and for signal model (4) 
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To determine the minimum level of SNR where the asymp-
totic distribution (8) is valid with a high degree of accuracy 
(i.e. the threshold level), it is necessary to derive the prob-
ability density functions (PDFs) of the phase estimates result-
ing from applying the estimator (6) under the signal models 
(2), (3), and (4). 

 
2.2 PDF of PHASE ESTIMATE 

 
The PDFs of the considered signal models can be derived all 
at once by using the generalized model 
 ],[][][][][ nvncnsnbnx +=  (10) 

with b[n] = c[n] ≡ 1 for signal model (1), b[n] = c[n] = w[n] 
for signal model (3), and b[n] = a[n], c[n] ≡ 1 for signal 
model (4). 
First, the PDF of the numerator  
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and the denominator  
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of (6) has to be derived. Since both are linear transformations 
of the data x[n], the results are normal distributed [2]. Hence, 
the PDF is completely specified by its mean and variance. 
The mean of the numerator can be calculated assuming large 
N and using the fact that E{v[n]} = 0 and the trigonometric 
identity cos(β)sin(α) = (sin(α-β)+sin(α+β))/2: 
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  (13) 
Note that for signal model (2), (13) is valid exactly if the 
sampling frequency is an integer multiple of the signal’s 
frequency.  
Analogously, the mean of the denominator of (6) can be 
shown to be 
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Next, the variance of (11) is defined as 
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But obviously 
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and henceforth 
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Analogously, 
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Therefore, U and V are normal distributed according to 
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and can be furthermore shown to be independent. 
To determine the PDF of the phase estimate, first the joint 
PDF of U and V is given by (after some straightforward ma-
nipulations) 
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The transformation 

 ( ) ( )
( ) V

UVU ==+=
0

0
0

22

ˆcos

ˆsinˆtan,
φ

φφξ  (21) 

leads to 
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The absolute value of the Jacobian, that must be taken into 
account for transformations [7], can be calculated to 
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Using (23) and the trigonometric identity 
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the joint PDF in the new random variables can be calculated: 
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To obtain the marginal PDF of the phase estimate, the ran-
dom variable ξ can be removed by integration over ξ, i.e.  
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This integral can be solved in closed form, leading to the 
sought PDF of the phase estimate. After some manipulations, 
the PDF belonging to signal model (2), indicated by the sub-
script (1) with b[n] = c[n] ≡ 1, is given by 
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with erf(⋅) denoting the error-function. The PDF of the phase 
estimate for signal model (3) (b[n] = c[n] = w[n]), defining 
the effective noise bandwidth (ENBW) as 
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which is 1/N for the rectangular window w[n] ≡ 1 (and > 1/N 
for windows other than the rectangular window), is given by  
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  (29) 
The ENBW has been introduced in [4]. It is commonly used 
in the literature as a measure of width of data windows. In 
section 2.4, this point will be discussed more in detail. 
Finally, the PDF of the phase estimate for signal model (4), 
using the abbreviation  
 

21

0
][

1

⎟
⎠

⎞
⎜
⎝

⎛
=

∑
−

=

N

n
na

γ  (30) 

is given by 
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2.3 Asymptotic PDF 
 
To prove the validity of above derivations, the above PDFs 
and the asymptotic PDFs described in section 2.1 must merge 
for high SNR (and equivalently for N >>). Exemplarily, this 
will be checked for the PDF (27). Using the approximation 
 ( ) ,1ˆcos 00 ≈−φφ  (32) 

in (27), since the phase estimate will be near the true value 
for high SNR, as well as the identity cos2(α) = 1−sin2(α) 
yields 
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The first term in (33) will vanish for high SNR, and the error-
function in the second term of (33) will be approximately 1. 
Furthermore,  
 ( ) ,ˆˆsin 0000 φφφφ −≈−  (34) 

and hence (33) can be rewritten for high SNR as 

 ( ) ( ) .ˆ
2

exp
π2

ˆ 2

00)1(0 ⎟
⎠
⎞

⎜
⎝
⎛ −−≈ φφηηφ NNp  (35) 

This is exactly (8) with inserted (9a). Therefore, the exact 
PDF (27) merges into the asymptotic PDF (8). Fig. 1 shows a 
comparison between exact and asymptotic PDF at low SNR 
of −20 dB. The exact PDF can be seen to have a non-
negligible uniformly distributed part, which can be inter-
preted as outliers. But however, also the shape of the PDF 
differs from the asymptotic one.  

Figure 1 – Comparison of exact (27) and asymptotic PDF (8) of 
phase estimate, η = −20 dB, N = 128, φ0 = 0. 

 
2.4 MSE and BIAS, THRESHOLD DEFINITION 

 
From the PDFs described in the preceding section, the mean-
square error (MSE) of the phase estimate can be calculated 
via 
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However, this approach neglects the circular nature of the 
phase estimate. As already mentioned in the introduction, in 
[3] it is shown that the ML phase estimator is in fact biased 
(for φ0 ≠ 0) when using the classical MSE definition (36) (or 
equivalently the classical bias definition). This problem not 
only arises in phase estimation, but in all estimation prob-
lems where circular random variables are under investiga-
tion. A detailed treatment of this topic can be found e.g. in 
[8], where generically usable definitions for sample means 
etc. of circular random variables are given. Note that it is 
application dependent whether or not definition (36) makes 
sense. For example, the so called cycle skipping phenomena 
in phase-locked loops, as mentioned in [3], is caused by the 
inherent bias of the ML phase estimate. However, in standard 
measurement applications, it is well known that the estimator 
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  (37) 
As a simple example, compare the resultant MSE when using 
definition (36) versus (37) with φ0 = π− π/180 and 

 ,
180
ππ0̂ +−=φ   

an estimate which is only 2 degree in error. However, (36) 
will indicate a large MSE. 
In the following discussion, the circular nature of the phase 
estimate will be taken into account. Unfortunately, the inte-
gral (36) cannot be solved in a closed form for the PDFs 
(27), (29), and (31), and hence must be evaluated numeri-
cally. 
Hitherto no direct specification in terms of SNR and N of the 
threshold level has been given. Of course, there is no discon-
tinuity in the MSE curve of an estimator below and above 
threshold, although the MSE below threshold departs rela-
tively quickly in most cases from the CRLB. To specify a 
threshold level, it thus makes sense to define a ratio of MSEs 
were the true MSE deviates more than a certain amount from 
the asymptotic one, i.e.  
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for an application dependent constant λ > 1. Using this defi-
nition, it can be easily decided whether or not an estimator 
operates above or below threshold, assuming knowledge of 
the SNR. In the following section, a simple method for de-
termining the threshold level will be developed, although it is 
possible to directly use the derived PDFs (27), (29), or (31), 
and numerically integrate them according to (36) or (37), 
respectively.  
However, some important conclusions for the case of win-
dowed and amplitude modulated data can be drawn. In [5] 
the increase of the variance of the phase estimate in the win-
dowed data case has been shown to be exactly the ENBW, 
see (9b) and (28). Hence, the loss in estimation performance 
and the increase of the threshold level are affected by the 
same factor. Note that this is not always the case, e.g. in fre-
quency estimation it is shown in [9] that the threshold level is 
also affected by the ENBW, whereas the estimator’s variance 
is affected by a more complicated term. Further, note from 
(27) and (29) that the ENBW appears always pair-wise 
withη, i.e. the data window acts as decrease of the SNR.  
The influence of amplitude modulated data on both the esti-
mation variance and the threshold level are potentially much 
more stringent. Also in this case, the amplitude modulation 
can be interpreted as a decrease in SNR, as evident from 
(30). However, when comparing the influence of e.g. a Han-
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ning window and an amplitude modulation in form of a Han-
ning window onto the SNR, the latter leads to a much higher 
decrease, as can be seen by comparing (28) and (30).  
This findings are of interest in that it is easy to evaluate the 
possible loss in MSE and threshold level of phase estimation 
e.g. in measurement systems and therefore to calculate the 
maximum amount of amplitude modulation allowable to 
achieve a certain amount of measurement accuracy. 
 
2.5 PRACTICAL IMPLEMENTATION 

 
In Fig. 2 the ratios of MSEs according to (38) are shown for 
different N for the case of no window and a Hanning win-
dow. It is obvious, that at least for a high degree of approxi-
mation and for 1 < λ ≤ 1.4, the threshold SNR ηth for a given 
λ is inverse proportional to N, that is 

 
N

k 1
th λη =  (39) 

with a constant k yet to be determined. Now, for a given λ, 
e.g. λ = 1.1, the constant k can be computed for a given N, 
e.g. N = 32, from rearranging (39) and numerically integrat-
ing (27), resulting in (see Fig. 2 for 10log10(ηth)) 

 044.12
1.1

3210 10/83.3
th =

⋅
==

−

λ
η Nk  (40) 

and (39) together with the result of (40) can be used subse-
quently to calculate ηth for different values of N. Therefore, 
the computational burden of numerically computing (36) or 
store a table of ηth for different N in memory can be com-
pletely eliminated. 

 
Figure 2 – Ratios of MSEs (38) for different N for the non-

windowed and the windowed case. 

3. SIMULATION RESULTS 

To validate the derived expressions for the PDFs (27), (29), 
and (31) and the corresponding MSEs, a Monte Carlo simu-
lation, for ψ0 = 0.125, Ts = 1/4000, φ0 = π/2, with 500 Monte 
Carlo trials each has been carried out. The simulation results 
show a good match to the developed theory. As data window, 
a Hanning window has been chosen, and the latter has been 
also used as amplitude modulation function a[n]. As can be 

seen, the case of amplitude modulation leads to a much 
higher threshold level and MSE, as claimed. 

 
Figure 3 – Monte Carlo simulation of the resultant MSEs of phase 
estimation for the non-windowed, windowed (Hanning window) 
and amplitude modulated case with N = 128, φ0 = π/2, 500 Monte 

Carlo trials each. 

4. CONCLUSION 

In this paper, we presented expressions for the MSE and 
threshold level for the standard ML phase estimator for win-
dowed and amplitude modulated data. The differences be-
tween the non-windowed and windowed respectively ampli-
tude modulated case have been worked out. A simple for-
mula for assessing the threshold level in phase estimation 
has been given. An investigation of the threshold level for 
unknown frequency and for using the estimators proposed in 
[6] is subject of future work. 
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