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ABSTRACT
In this paper the implementation of multiple-input multiple-
output (MIMO) signal processing on a reconfigurable hard-
ware architecture is discussed. The implementation of
MIMO systems is usually determined by the parameters of
the application at hand, e.g. the number of sensor elements,
the number of output signals or the required word length.
Furthermore, there is also a flexibility in terms of the al-
gorithms, which are used for computing the required task.
We will present two different approaches for solving the lin-
early constrained MVDR (minimum variance distortionless
response) beamforming problem. The two methods can be
mapped on a reconfigurable hardware architecture. This ar-
chitecture is described as a virtual systolic array, which con-
sists of reconfigurable processor elements that can execute
different transformation modes (linear, orthogonal). We will
discuss the configuration in terms of change of parameters
and change of algorithm, respectively. Furthermore, bit true
simulations of the BER for the different approaches are pre-
sented for various word lengths. Finally, the trade-off be-
tween performance and reconfiguration effort is discussed.

1. INTRODUCTION

The growing demand for high rate wireless communication
systems has drawn a great attention to MIMO communi-
cation techniques, in which multiple antennas are used for
transmission and reception [1]. The increasing number of
receiving antennas also leads to an increasing complexity of
the signal processing.
Furthermore the quantity of supported transmission stan-
dards for wireless communications will grow. Like today
with GSM, UMTS, WLAN and Bluetooth, all these stan-
dards have to be handled by one mobile device. To man-
age this, hardware seems to be too inflexible, so that a pure
software baseband processing would be desirable (Software
Defined Radio - SDR) [2],[3]. Unfortunately, today’s pro-
cessors cannot handle the full processing task in an energy
efficient way, especially under the aspect of growing transfer
rates.
This leads to the possible use of a reconfigurable hardware
architecture [4], which lies somewhere in between SDR and
dedicated hardware. This reconfigurable hardware works
as an accelerator [5] for complex signal processing tasks
and can be used with different standards (e.g. for solving
constrained/unconstrained linear least squares problems, see
Figure 1).
In this paper we will present a parallel implementation of
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a linearly constrained MVDR beamformer [6] on a recon-
figurable architecture. Of course, the resulting architecture
should support various parameter sets, as e.g. a different
number of input signals or output signals. However, be-
sides these system parameters, various algorithms used for
the problem at hand can lead to different implementation re-
quirements like e.g. the used word length. Here, we will
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Figure 1: Software radio with accelerator

discuss two approaches. Using the Schur complement in
the first approach, the incorporation of the linear constraints
into the minimization problem can be formulated as a partial
Gaussian elimination process [7]. This requires a reconfig-
uration of the processor elements from orthogonal to linear
mode. The second approach is based on a weighted embed-
ding of the constraints into the minimization problem. The
latter allows higher data throughput, since it could be exe-
cuted without reconfiguration during the beamforming pro-
cess. However, the first approach can be implemented with
reduced word length.
The paper is organized as follows: In section 2 we explain
the underlying signal model and review the MVDR beam-
forming algorithm. In section 3 we present two different
approaches for solving the constrained MVDR optimization
problem. The used reconfigurable hardware architecture to
implement the above approaches is described in section 4.
Simulation results and a discussion concerning performance
and configuration effort are given in sections 5 and 6.

2. SIGNAL MODEL

Consider a scenario with n omni-directional sensor elements
located in a plane at positions mi ∈ R2. The antenna ar-
ray receives a mixture of desired signals, undesired interfer-
ences from unknown direction and background noise that is
assumed to be uniformly distributed over all directions. The
scenario is depicted in Figure 2. Note that if s1(t) is the de-
sired signal, the second signal s2(t) also represents an in-
terferer with known direction of arrival, whereas s3(t) is an
interferer from unknown direction. For simplicity, we use the
far-field approximation and assume that fc À β , with fc the
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Figure 2: Scenario with four antennas

carrier frequency and β the bandwidth of the received signal.
Therefore we can formulate the signal at the sensor element
k in the baseband representation

xk(t) = x̃(t)exp(− j2π fcτk(α))+nk(t), (1)

where x̃(t) is the complex baseband signal at a virtual refer-
ence sensor element placed in the origin of the antenna co-
ordinate system and τk(α) the time delay of a signal from
direction α at sensor k relative to the reference sensor. The
noise signal nk(t) should be a realization of a white Gaussian
noise process (AWGN).
For receiving signals from p known directions using an array
consisting of n antennas, we can formulate a more compact
matrix based notation that is defined as follows:

C =




e jφ1,1 e jφ1,2 · · · e jφ1,n

e jφ2,1 e jφ2,2 · · · e jφ2,n

...
...

. . .
...

e jφp,1 e jφp,2 · · · e jφp,n


 withφ`,k =−2π fcτk(αl)

(2)
For a given array geometry and given directions of arrival αl ,
the time delay τk(αl) can be easily calculated. The needed
αl have to be supplied by a Direction of Arrival (DOA) esti-
mator [8], which is assumed to be optimal in this paper. The
rows of C are also called steering vectors. By sampling the
signal of each antenna element we get the discrete data ma-
trix

X =




x1(1) x2(1) · · · xn(1)
x1(2) x2(2) · · · xn(2)

...
...

. . .
...

x1(m) x2(m) · · · xn(m)


 , (3)

where m is the number of samples taken at each of the n
antennas. Now, weighting the sensor outputs with complex
factors wi, the summation of these products results in a spa-
tial filter, a so-called beamformer [9]. The output signal of
this filter is given by




e1
...

em




i

= X




w1
...

wn




i

= Xwi (4)

Every weight vector wi corresponds to one desired output
signal ei. For q signals we get the matrix notation

E = [e1 e2 · · · eq] = X [w1 w2 · · · wq] = XW (5)

The directional characteristic of the array for one weight vec-
tor w is given by

di =




d1
...

dp




i

= Cwi (6)

with di containing the amplitudes for all directions p. In or-
der to determine the wi for a desired direction, we have to
define the values of di. Generally values normalized to the
set {0,1} are used. For the elimination of a signal from a
known direction we use 0, for a desired signal we use 1. The
influence of all other unknown signals should be minimized,
so we can formulate the beamforming problem as the con-
strained optimization problem

min
wi
‖ei = Xwi‖2

2 for i ∈ [1,q] and CW = D (7)

with D = [d1 d2 · · ·dq] containing the constraints for all q
desired signals.

3. ALGORITHMS

There are two different approaches to solve the above opti-
mization problem.

3.1 Gauss-/Givens Transformation
One approach to solve the constrained optimization problem
is to reformulate the problem as a least squares problem with-
out constraints

min
wi
‖ei‖2

2 with
[
C
X

]
wi−

[
di
0

]
=

[
0p,1
ei

]
(8)

With a partitioning of the matrices C and X we get
[
C1 C2
X1 X2

][
wi1
wi2

]
−

[
di
0

]
=

[
0p,1
ei

]
with C1 ∈ Fp×p

X1 ∈ Fm×p (9)

Now the constraints equation can be written as

C1wi1 +C2wi2 = di (10)

Solving for wi1, we get

wi1 = C−1
1 (di−C2wi2). (11)

Thus,

Xwi = X1wi1 +X2wi2

= (X2−X1C−1
1 C2)wi2− (−X1C−1

1 di)

Therefore, with

X2 = X2−X1C−1
1 C2 (12)

and
yi =−X1C−1

1 di (13)

we have to solve the least squares problem

min
wi2

‖X2wi2−yi‖2
2 (14)
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for all i = 1, ...,q in order to get W2 and then calculate W1
from (11). In a further step we have to calculate the desired
output signals by

E = XW. (15)

It is beneficial, particularly with regard to a parallel hardware
implementation, to incorporate the steps involved in the so-
lution of the constrained least squares problem (i. e. equa-
tions (11) till (15)) into one matrix triangularization process.
This can be done by applying a sequence of Gaussian trans-
formations G to equation 9. This leads to

G
([

C1 C2
X1 X2

]
wi−

[
di
0

])
= G

[
0p,1
ei

]
(16)

⇔
[

R1 C′
2

0m,p X2

]
wi−

[
d′i
yi

]
=

[
0p,1
e′i

]
. (17)

where R1 is an upper triangular matrix. The expressions X2
and yi correspond to the Schur complement [10]. The appli-
cation of G does not influence the result of the optimization
problem, because G has the special structure

G = 11
p m (18)

The resulting least squares problem in the lower part of ex-
pression (17) can be solved by QR decomposition of X2.
This leads to

[
Ip

QH
m

]([
R1 C′

2
0m,p X2

]
wi−

[
d′i
yi

])
=

[
0p,1
QH

me′i

]

(19)

⇔



R1 C′
2

0m,p

[
R2

0m−n+p,n−p

]

wi−




d′i[
yi1
yi2

]

 =

[
0p,1
e′′i

]
, (20)

Note that the unitary transformation of e′i does not change
the solution of the equation as well, so we can solve the mini-
mization problem by back substitution in the first n equations

min
wi
‖ei‖2

2 = min
wi
‖e′′i ‖2

2 ⇔
[
R1 C′

2
R2

]
wi =

[
d′i
y′i1

]
. (21)

This method can be implemented on a processor array, as
described in section 4.

3.2 Weighting
An approximate solution ŵi of (7) can be calculated by em-
bedding the weighted constraints into the minimization ex-
pression [11], like

min
ŵi

∥∥∥∥
[

X
ξC

]
ŵi−

[
0

ξdi

]∥∥∥∥
2

2
(22)

with an amplification factor ξ ∈ R,ξ > 1. With ξ → ∞ the
approximation ŵi converges against the optimum solution
wi. This is a disadvantageous behavior for architectures with
limited word length fixed point representations, because the
risk of numerical overflows grows with ξ .
To obtain a good approximation with smaller ξ anyway, we

can use the fact that the linear equations system is grow-
ing over time with a growing number of samples taken at
the antennas. This means that we can interweave the matrix
[ξC|ξdi] with the rows of X before passing the result to a
least squares processor array as described in section 4. In-
stead of increasing the magnitude of ξ we can increase the
density of the constraint equations.

4. ARCHITECTURE

The described approaches shall be implemented on a recon-
figurable hardware architecture, which consists of a virtual
systolic array similar to the one presented in [5]. Both al-
gorithms are based on a triangularization process that can be
expressed by transformation operations (linear, orthogonal).
The first approach is based on a partial Gaussian elimination
which can be expressed as a linear transformation. The sub-
sequent QR decomposition can be done by unitary Givens
transformations.
To get a more flexible homogeneous architecture, the PEs
shall be able to perform both transformations. This leads
to reconfigurable fixed-point CORDIC based processor el-
ements (PEs), that are designed to operate in two modes,
the orthogonal (Givens) and the linear (Gaussian) mode.
Using approach 1 the processing starts with the calculation

linear Gaussian

transformations

transformations

unitary

l C1

l X1 l C2

l X2 l D

0

Figure 3: Processor array

of R1,C′
2 and d′1 · · ·d′2, which define the constraints. This is

done by Gaussian transformations, that are realized by PEs
in the linear mode. The particular implementation of the PEs
makes it necessary to perform orthogonal operations before
activating the linear mode for the Gaussian transformations.
This is caused by the effort to construct PEs that are both
simple and flexible.
The processing continues with the calculation of the QR de-
composition in the last n− p array rows, which is realized by
unitary Givens rotations using the PEs in orthogonal mode.
The resulting configuration is shown in Figure 3. Note that
if the constraints are unchanged, the first p array rows stay
constant. The modification of the constraints equations can
be done by applying rows of the matrices C and D to the
processor array without interrupting the data flow. However,
when doing this we have to repeat the above initialization
with a change between orthogonal and linear mode. Because
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this operation causes some delay, the throughput of the pro-
cessor array using this approach is decreased.
The triangularization process of method 2 is straightforward,
because we only need Givens rotations to perform the QR
decomposition of equation (22). This also means, that we
don’t have to perform an initialization when changing the
constraints equations, because the PEs always work in or-
thogonal mode. The configurations of the processor array for
both methods are given in Figure 4. Approach 1 (left hand
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Figure 4: Processor Array

side) is advantageous in terms of a higher numerical stabil-
ity, because there are no multiplications with ξ À 1 required.
Furthermore we have to insert the constraints equations only
if they have changed. In approach 2 (right hand side) we
need to interweave the constraints matrix and the data ma-
trix regularly, which results in a less efficient utilization of
the processor array. On the other hand, if we change the con-
straints very fast, approach 2 is advantageous, because in this
case no additional reconfiguration is needed, while approach
1 needs to perform an initialization step on every update.

5. SIMULATIONS AND DISCUSSION

The two different approaches are compared in BER simu-
lations for different word lengths. The used scenario of a
beamformer with five sensors is depicted in Figure 5 (left
hand side). We assume 4-QAM modulated signals from three
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Figure 5: Used scenario for simulation

directions, where the directions of s1(t) and s2(t) are known.
Signal s3(t) is an interfering signal from unknown direction.

In Figure 5 (right hand side) a snapshot of the beamform-
ing process for a desired signal s1(t) is depicted. It can be
seen that both constraints (|s1(t)| = 1 and |s2(t)| = 0) are
fulfilled, while the interfering signal s3(t) from unknown di-
rection could not be completely eliminated. The BER re-
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Figure 6: Simulation results for approach 1

sults for this scenario using approach 1 are given in Figure
6. For the sake of comparison a lower bound is given by the
BER of a transmission over a Gaussian channel without in-
terfering signals s1(t) and s3(t). The optimum performance
of the beamforming algorithm is defined by the floating point
BER. As mentioned above, the processor elements are using
fixed point arithmetics for computation. Obviously the im-
plementation complexity can be reduced by decreasing the
word length. We can see, that the curves for wd = 16 bit and
wd = 12 bit match the floating point results. With wd = 8
bit we get some loss in performance. The applicability for
wd = 4 bit is obviously not given. It seams feasible to use
wd = 12 or even wd = 8 for a particular implementation.
The behavior of approach 2 under the same conditions is
slightly different, as we can see in Figure 7. Here we already
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Figure 7: Simulation results for approach 2

see a performance loss with wd = 12. In order to achieve
floating point performance we need at least wd = 16 bit. For a
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particular implementation the word length required is higher
compared to the implementation of approach 1.
Both approaches for solving the beamforming problem are
generally applicable. Approach 1 has advantages in the nu-
merical stability and the efficient utilization of the proces-
sor array. Furthermore the achievable BER with a particu-
lar word length is lower compared to approach 2. On the
other hand approach 1 requires a mode change between lin-
ear and orthogonal activation when updating the constraints
equations. This leads to a loss in data throughput due to the
required configuration process.
Both approaches have to be seen as a trade-off between data
throughput and BER performance. The choice of the right
method depends on the particular application. For a given ar-
chitecture method 1 might be used for lower rate applications
with nearly floating point performance. If the focus is on
high data throughput and a minor loss in BER performance
can be accepted, method 2 might be the better choice.

6. CONCLUSION

In this paper we have presented the implementation of an
MVDR beamformer on a reconfigurable hardware architec-
ture using two different algorithms. While the first approach
has better BER performance on an implementation with a
particular word length, the second approach has advantages
in the reconfiguration effort. Because it does not require
any reconfiguration during the beamforming processing, ap-
proach 2 is better suited for high-speed applications. We have
shown, that it is possible to use different methods to solve the
particular linearly constrained least squares problem on the
same platform. Dependent on the application the best com-
promise can be chosen and the respective configuration can
be applied.
The use of a reconfigurable hardware architecture leads to
a flexible platform for different processing tasks. Many ap-
plications, like equalization, detection and estimation can be
mapped on this platform [12].
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