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ABSTRACT

In this paper we interpret the statistics of ultrasonic backscat-
ter in the framework of a normal variance-mean mixture
model. This is done by considering the complex envelope
of the echo signal as a double stochastic circular Gaussian
variable, in which both the variance and the mean are lin-
early scaled by a stochastic factor Z. By assuming Z to be "
distributed, we re-derive the generalized K distribution, and
present a new iterative algorithm for estimating its parame-
ters. We also derive a maximum a posteriori (MAP) filter
based on the generalized K model. The appropriateness of
the generalized K model in representing the local amplitude
statistics of medical ultrasound images, and the filtering per-
formance of the the new MAP filter, are tested in some pre-
liminary experiments.

1. INTRODUCTION

Many statistical models have been proposed to model the am-
plitude statistics of ultrasound signals. Both Rayleigh and
non-Rayleigh models have been considered. The Rayleigh
model is associated with the Gaussian or diffuse scattering
model, due to the fact that the complex envelope of the signal
in this case is circularly Gaussian distributed [1]. The most
well-known non-Rayleigh amplitude model is the K distri-
bution [2]. This distribution has been proposed to model
echoes from tissue containing scatterers with variable con-
centration and non-uniform cross section [3]. Among other
non-Rayleigh models we mention the Nakagami distribution
[4], the homodyned and the generalized K-distributions [5],
and the recently introduced Rician Inverse Gaussian (RilG)
distribution [6, 7].

In this paper we revisit the generalized K model. We
show that by formulating the statistics of ultrasonic scatter-
ing as a normal variance-mean mixture model, in which both
the variance and the mean are linearly scaled by a stochastic
factor Z, we can easily calculate the pdf of the generalized K
distribution. Furthermore, this approach also allows us to ob-
tain a new iterative algorithm for estimating the parameters,
and to derive new maximum a posteriori speckle filter.

The paper is organized as follows. In the next section, we
present the normal variance-mean mixture model and derive
the probability density function of the generalized K distribu-
tion. In section 3, we present a new algorithm for estimating
the model parameters from data. In section 4, we apply the
algorithm to fit the generalized K model to the local ampli-
tude statistics of real medical ultrasound images. We derive
a MAP filter based on this model, and show its filtering per-
formance. In section 5 we give some conclusions.

2. THE GENERALIZED K DISTRIBUTION

2.1 Normal variance-mean mixture models

In [8] it was shown that if the probability density function
(pdf) of some random variable Y, py(y), is symmetric about
zero, and the derivatives of py(y) satisfy
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then there exist independent variables X and Z, with X being
a standard normal variable, such that

Y = VZX. )

The variable Z is allowed to take on only positive values. A
random variable Y, which can be expressed as in (2), is re-
ferred to as a normal variance mixture model, or a scale mix-
ture of Gaussians. If the mean of Y is non-zero, (2) may be
modified by adding a scalar mu corresponding to the actual
mean value. The marginal pdf of Y is obtained by integrating
the conditional distribution py|z(y|Z) over pz(z), as in (3)
below:

pr) = [ prztyiz =2)pz(z)dz

A more general model, known as a normal variance-mean
mixture model, was introduced in [9]. A 1-D normal
variance-mean mixture variable is in its most general form
expressed as

) pz(z)dz. (3)

Y =m+bZ+VZX, )

where X and Z are defined as above, and b is a scalar param-
eter. Hence, in this model, both the mean and the variance of
Y are varying linearly according to the stochastic variable Z.

The multidimensional extension of the generative model
described above, is straight forward. Let X be a d-
dimensional, zero mean Gaussian variable with covariance
matrix equal to the identity matrix. Let furthermore, I' €
299 be a positive definite matrix with determinant detT' =
1, and let Z be a scalar random variable with pdf pz(z), which
can attain only positive values. We now generate a new vari-
able Y as a multivariate variance-mean mixture variate ac-
cording to

Y =m+bZ+VZI2X, (5)

where m is a location vector, b is a vector parameter ac-
counting for the linear scaling of the mean of Y as function



of Z. The matrix I" defines the internal covariance struc-
ture of the variables of Y. For this reason we will refer to
this matrix as the covariance structure matrix. To obtain the
marginal pdf of Y, we have to perform an integration sim-
ilar to the one in (3) over the prior distribution pz(z). The
integral which must be computed is accordingly given as
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In general, probability density functions generated ac-
cording to (5) will turn out as so-called sparse distributions,
i.e., they are peaked at their mode, and have heavier tails
than the Gaussian pdf.

2.2 Deriving the generalized K pdf

In ultrasound, a complex backscattered signal Y is often rep-
resented in terms of its quadrature components, i.e.

Y =Y+ jY, = Rel®, (7

where @ is the phase, R is the amplitude, and Y| and Y are re-
ferred to as the in-phase (I) and quadrature (Q) components,
respectively. Let us consider Y as a 2-D normal variance-
mean mixture signal, i.e. Y = [Yq, Y>]', where Y is generated
as in (5). The signals Y| and Y, are usually assumed to be
uncorrelated, and with equal power. Accordingly, the covari-
ance structure matrix [ should be given as the 2-D identity

matrix, i.e.
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Note that, for a given value of the scale variable Z, the Y-
and Y,-components are independent Gaussian variables with
non-zero means and variances equal to z. However, when Z
is itself a random variable, the unconditional distribution of
Y| and Y, is non-Gaussian, and the variables are statistically
dependent.

We now continue to derive the distribution for the ampli-
tude R in the case when m = 0 in (5), but b is non-zero. The
covariance structure matrix is still the 2-D identity matrix,
and the pdf of the I" distribution is written as

Then we have

Y =bZ+VZX, (10)

and the simultaneous pdf of (y;,Y2|Z) becomes

(Y1 —bi2)* + (y2 —boz)?
2z ’
(1)
where [by,b,]' = [b cos(w), b sin(w)]!. w is the angle of b
with respect to the Y;-axis, and b is the norm of b.
The envelope of Y is now defined as
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and the corresponding angle variable is
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We now switch to polar coordinates, and integrate over ®.
The resulting Z conditioned pdf for R becomes
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where lo(+) is the modified Bessel function of first kind. This
is the well-known Rice distribution. The marginal distribu-

tion for R is obtained by integrating over the prior distribution
for Z. Choosing Z to be I' distributed as in (9), we get
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This integral can be solved in closed form, and the resulting
pdf is given as
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where Ky (+) is the modified Bessel function of second kind,
and order v. This is a normalized, valid probability density
function, defined by the three parameters a, Lz, and b. It is
known in the literature as the generalized K distribution. In
the next subsection we will describe a procedure for estimat-
ing these parameters from data.

Pr(r) = (16)

3. PARAMETER ESTIMATION

The generalized K distribution is defined through a latent
stochastic variable Z. We will below show how its param-
eters may be estimated in an iterative maximum likelihood
approach, using an EM type algorithm. In this case, the
E-step involves updating the first and second order moments
of Z|R, and the M-step updates the parameters.

The latent variable Z is in our case " distributed, and us-
ing the expression in (9) for the pdf of Z, its k-th order mo-

ments are er( 0
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From (17) we immediately see that LIz and O are obtained as
pz = E{Z}, (18)
and !
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Furthermore, using Bayes rule we find that the posterior
 prz(r12) p2(2)

distribution Z|R has a pdf given as
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The expression for pzr(z|R) is recognized as a Generalized
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Inverse Gaussian pdf with parameters {a —1,r, ,/b% + i—‘;},

i.eZ|R ~ GIG(z;a —1,1,, /2 + i—g) The kth-order moments
of a GIG(u;a,d,y)) distribution is [9]

k

We furthermore note that the second order moment of the
Rice pdf in (14) is 2Z 4+ b%Z2, which when averaged over a
I-distributed Z gives
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For given values of a and pz, b may be estimated from
E{R?} as
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From (21) we have that, for a given observation rj,
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and
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Given N observations, we define

&=E{Z’|n} =

N
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and
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Regarding fj and & as estimates for E{Z} and E{Z’},
respectively, estimates for Uz and o may be obtained from
(18) and (19).

Iterative parameter estimation procedure

(i): Calculate E{R*} = & SN, r.

(ii): Set | = 0. Select some initial estimates for the parame-
ters @ and Liz|.

(iii): Set 1=1+1. Estimate b, using (23).

(iv): Calculate n; and & using equations (24) and (25).

(v): Calculate i and & (26) and (27).

(vi): Estimate iz, and &y using (18) and (19).

(vii): Repeat steps (iii)- (vii) until convergence.

A convergence test may be defined based on the changes
in the parameters at each iteration stage, or by looking at
the change in the log-likelihood score. Our experience is
that convergence is achieved very fast, often in less than 10
iterations.

Remark: We observe that the probability model, which
is known as the K distribution, is a special case of the gen-
eralized K distribution with b = 0. Hence, all the derivations
given above are valid for the K distribution. In fact, the iter-
ative estimation procedure should be considered as a useful
alternative to existing estimators for the parameters of the K
model.

4. EXPERIMENTAL ANALYSIS

In the experimental analysis, we examine two aspects of the
generalized K model. First, we examine the appropriateness
of the generalized K model to represent the amplitude statis-
tics of linearly scaled medical ultrasound data. This is done
by visually comparing the model pdf to locally generated his-
tograms. We use the original K model as a reference. We also
perform a cross-validation log-likelihood test to compare the
goodness of fit of these to models. We then construct a max-
imum a posteriori (MAP) speckle filter based on the gener-
alized K model, and show that the preliminary results reveal
excellent filtering performance. Homogeneous regions of the
image are smoothed, whereas details seems to be preserved.

4.1 Modeling the amplitude statistics of local image seg-
ments

We select regions of size 50 x 50 pixels from some ultra-
sound images covering a human kidney, a human liver, and
a human heart. Using the iterative algorithm described in
the previous section, we estimate the parameters of the gen-
eralized K model, and plot the resulting pdf on top of the
actual local histogram. The same process is repeated for the
K model, using the modified algorithm, i.e. requiring b = 0.
Four examples are displayed in Fig.1. These examples first
of all show that both algorithms converge to pdfs, which have
shapes close to the shapes of the histograms. Secondly, the
plots in Fig.1 show that the generalized K model has better
overall fit to the histograms than the K model. This is to be
expected, since this is the more general model, which has the
K as a special case. The histograms of the four examples
have some diversity in shape, and as can be seen, the gen-
eralized K model is in fact able to quite accurately fit to all
shapes. It is also interesting to note that the parameter es-
timation algorithm of the generalized K model converges in
most cases in less than 10 iterations, whereas the algorithm
for the K model uses a lot more.

In the log-likelihood tests we randomly picked 100 image
segments of size 40 x 40, and calculated the associated log-
likelihood values using a 10-fold cross-validation approach.
In 70 % of the cases, the generalized K model was selected
as the best model. In those cases where the K model won, the
log-likelihood values of the two models were very similar.

4.2 Speckle filtering

Speckle filtering in ultrasound images is usually classified
into two types; compounding techniques and filtering [10].
In the compounding techniques, a series of images of one ob-
ject are sampled at different times, with different ultrasound
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Figure 1: The plots show the results of fitting the generalized K (dashed-dotted) and the K (dashed) distributions to some local
amplitude histograms (solid) of some medical ultrasound image segments. The images cover a human kidney (upper left),
human liver (upper right), and human heart (both lower panels).

frequencies, or different scan directions, and subsequently
merged to form a composite image. This process is known
to reduce the spatial resolution of the image. In the filter-
ing techniques a moving filter kernel is used to reduce the
speckle noise. Examples of some well-known such filters are
the Wiener filter, the median filter, the adaptive median filter
[11], and the minimum mean squared error filters [12, 13].
Some speckle filters have been developed using a
Bayesian approach. In the Bayesian filtering approach the
image is filtered by performing a statistical estimation of the
speckle-free image based on a statistical model for the image
formation process. The estimated speckle-free amplitude of
each pixel, 2[X,y], where [X,y] is the spatial location, is ob-
tained as the most likely amplitude value, given an observed
value r[X,y]. This procedure is known as maximum a posteri-
ori filtering, because the solution corresponds to the location
mode in the posterior distribution. Neglecting the spatial co-
ordinates, the estimation is stated in mathematical terms as

2= argmax pz|r(Z|r). (28)

Ppz|r(z|r) is generally not known, and one has to restate
the expression in terms of known pdfs using Bayes rule.
When the generalized K distribution is used to model the
speckled data in the image domain, the pzr(z|r) of (20)is
used in (28), and the solution is found by differentiating (20)

(or the logarithm of (20)) with respect to z, and finding the
zero corresponding to a positive Z value. This gives
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Hence, in a local window around the pixel at location
[x,y], the generalized K parameters are estimated from the
observed data. The parameters of the corresponding poste-
rior pdf are thus also given, and the estimated speckle-free
amplitude is found as the location of the peak of pzr(z|r),

with iz and a replaced by their local estimates, and r re-
placed by the observed r[X,y]. The amplitude estimate is then
found from (29).

In the literature a MAP filter based on the K model,
is generally referred to as the M-MAP filter, because of
the assumption of a I' distributed Z [14]. This filter has
been widely used in speckle filtering of ultrasound and
SAR images. In the case of the K model the Z variable
is physically related to the normalized backscatter cross
section. In the generalized K model, the Z variable is, as can
be seen from (10), also effecting the mean of the complex
backscattered signal, and the interpretation is not so obvious.
We will refer to the MAP filter presented in (29) as the
generalized I'-MAP filter.

Fig.2 shows the result of applying the generalized I'-
MAP filter to a medical ultrasound image of the human heart.
The images are from left to right: the original image, the re-
sult of filtering with a window size of 7 X 7, 9 x 9, and
15 x 15, respectively. We observe that the filter process has
smoothed homogeneous areas, but in regions where there are
abrupt changes and details, this information seems to have
been preserved. We also see that a larger window size will
result in more smoothing, as would be expected.

5. CONCLUSION

We have shown that the generalized K distribution can be
derived in the framework of a normal variance-mean mix-
ture model, with a I" distributed scale factor. In the context
of ultrasound scattering from biological tissues, this model
corresponds to viewing the scattering process as continuous
Brownian motion with drift, as opposed to the usual discrete
random walk model. In the paper we have shown that our
approach readily gives us an iterative procedure for estimat-
ing the parameters from data, and we are also able to obtain
a closed form maximum a posteriori speckle filter based on
the generalized K model. Some initial tests shows that the
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Figure 2: The result of filtering an ultrasound image of the human heart. The images are from left to right: Original image,
filtered image with window size 7 X 7,9 x 9, and 15 x 15, respectively.

parameter estimation algorithm converges, often in less than
10 iterations, to pdfs which represent the local statistics of
real data well. The new speckle filter seems to perform well,
it smooths homogeneous regions, while at the same time pre-
serve important details in heterogeneous regions.
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