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ABSTRACT The maximum likelihood (ML) estimator df seeks a least-

squares fit to the observations and the ML estimate is a solu-

We consider the problem of estimating a paramétef a tion of the log-likelihood equation (see [7, pp. 187])

signals(x; 8) corrupted by noise when only 1-bit precision
samples are allowed. We propose and analyze a new estima- N n n

tor based on dithered 1-bit samples. Our estimate is consis- z s (N; 9) [Z(n) — S(N; 9)} =0. (1)
tent and satisfies an asymptotic CLT for a wide class of dither n=1

distributions. In particular, uniformly distributed déhleads

to only a logarithmic rate loss compared to the case of ful
precision samples.

nder mild regularity conditions, the ML estimate is consis
ent (in probability as\ — ), satisfies a central limit theo-
rem (CLT), and the variance in the CLT attains the Cramer-
Rao lower bound.
1. INTRODUCTION In contrast when only 1-bit precision samples of obser-
. . . N vations ,i.e., sigfZ(n)), are available, the ML equation is
This paper is concerned with the problem of estimating a P&omplicated and little is known about the performance of

rameter of a signal corrupted by noise when only its 1-bithe | estimate for the general case. For example, when
precision samples are available. This problem is partiiula gy g) — g, then in the full precision case the ML estimate

L . i ; §s the sample mean, but no closed form solution is known for
development of miniature sensing devices which can comyo ML estimate in the 1-bit sampling case. In this paper,

pute and communicate autonomously. Networks of suclye employdithered1-bit sampling and propose an estimate
smart” sensors could be used for detecting and estimating, 5 requires solving an equation of the form (1). In ditidere

characteristics of spatio-temporal processes in sevital s sampling, a random noise is addedZ(m) before quantizing
ations ([4]). When physical models for such processes arg Thys our method leverages the idea of obtaining a low
known, these problems can often be cast as those of esti

X ; ; >~ recision measurement at each of the possibly large number
tion of parameters of a signal; for example, estimating they sensors and combining them to form an estimate of the pa-
velocity of a wave propagating through some medium. Th'?amete%. Moreover, our estimator requires no more compu-

constraint posed by this exciting sensing technology, hOW'Eation than the ML estimate in the full precision case, and fo
ever, is that being miniature and low cost, a typical senso

will be a low precision device; hence, any estimation schem he above example afx; 6) = 6, our estimate just involves
. . P ' »any €s ; the averaging of dithered samples. Our estimate is consiste
in this context can employ only low precision, noisy mea-

. and asymptotically normal for a wide class of dither distri-
surements available from gach Sensor. L butions. In particular, uniform dithering leads to only g4o
Formally, the problem is to estimate a deterministic butyjihmic rate loss compared to the full precision case. Due
unknown parametefo < R of a real-valued signa(x; 6o) 1 space constraint, we do not present the full mathematical
corrupted with additive noise. In this paper, we conside

; ) ; o 'erivations in this paper (these can be found in [3]). But we
only one dimensional space and no time variation. We cofgiseyss the intuition behind our results with examples and
sider bounded observation spacec [0,1]. Results simi-

. \ Simulations.
lar to ours can be obtained for the general case with mi-

nor notational changes. To make the problem well-posedy 1 Related Prior Work

we assume throughout that this problem has a unique so- . L _ . o

lution whens(x; ) is observed without any noise, that is, While a theory Qf estimation using full precision samplmg is
s(x; §) # s(x; ') whenever8 # 8. now well-established (see for example, [7, Section IV.E.2]

When full precision samples with i.i.d. Gaussian noiseth€ case of low precision sampling seems to have been con-

are available aN locations, then the maximum-likelihood Sidered only for particular cases. For example, the problem

: ; ; of frequency estimation using 1-bit ADC has been studied
E)’\él%:l)eﬁﬁgjagi/ o6 is well analyzed. Let the observations in [5], [10]. In [9], the problem of choosing the quantiza-

tion threshold for the case of signal amplitude estimatgon i
n investigated.
Z(n) = S(ﬁi 90) + W (n) To the best of our knowledge, the problem of estimat-
ing 6y for a general signad(x; 6p) with only 1-bit ADC has

where{W(n),n=1,...,N} is thei.i.d. thermal/ambientnoise  1ye do not discuss strategies for distributed implementatibthis
in the measurements with common distributiofi (0,1).  scheme in this paper.
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not been addressed before in the literature. However, a come can estimate the parameter uniquely. For example, when
sistent estimator using only 1-bit ADC can be derived froms(x; ) = 8p(x), thend(8; 6y) = (6o— 6) fbl p?(x)dxand A3)
reference [6], which addresses the problem of estimatieg this seen to be satisfied.

signals(x; 6p) from the observationgsign(Z(n))}. Our es-  sampling: Our results can be established for deterministic as

timator is an improvement over this estimator: a) it recglire ve|| as random spatial sampling. Here we report our results
less computation, and b) it has a better rate for the CLT (segnly under:

Section 3.1 for a discussion). . N .

A key element in our results is dithering. Dithering haQS) Uniform (.jetermlrustlc sampllng(n.: n/N,1<n<N.
been used previously by several researchers in different coOther sampling designs are also of importance and can also
texts; for example, [6] uses it to estimate a smooth signal ufe accommodated. If a non-uniform deterministic sampling
ing only 1-bit ADC, [2] employs a deterministic dither signa is given byX, = B(n/N), whereB: [0,1] — [0, 1], then our
and oversampling to recover a band-limited function from fi-results under DS) can be applied by redefining the signal to
nite precision samples. However, in the context of signaPes(B(x);0).
parameter estimation, dithering does not seem to have be&thering: For the dither signal, we present results under the

exploited before. following two assumptions.
UD) The dither signakWy(n),1 < n < N} is i.i.d. with uni-
2. OBSERVATION MODEL AND ASSUMPTIONS form distribution on[—1,1] and it is independent of the

thermal noisg§W (n),1 < n < N}. The dither magnitude

The observation§Y (n), n=1,...,N} are given by is taken o be

Y (n) = sign(s(Xn; 6o) + atW (n) + a(N)Wg(n))  (2)

a(N) = B(log(N))**1)/2 for someB > 0,n > 0
The random variable$Wy(n)} constitute the dither signal,

while {X,} are the sampling locations. We estim&gby The constanty(N) in (3) is taken to be(N).
solvingTn(6) = 0, where, NUD) The dither signal{Wy(n),1 < n < N} is i.i.d. with dis-
LN tribution F (t) and it is independent of the thermal noise
_ = . _ . {W(n),1 < n< N}. The distributionF (t) has the fol-
T(6) N n:ls’(Xn,e) [CaN)Y(m) =5(%ii6).] - (3) lowing expansion for some& > 0, |t| < € and some
ge{2,3,...}

The value ofcy(N) depends on the distribution of the dither

and is specified below. Recall thidtdenotes the number of 1 by bggq

space samples or simply the number of sensors. Below we F(t) = 2 + Et + jt +R(t)

collect together most of the assumptions we need for analyz-

ing the estimator and we also discuss their implications. whereb; # 0, by # 0, and|R(t)| < constant: |t|9+1 for

Noise: The usual assumption about the noise is: it| < €. The dither magnituda(N) — o anda?(N) /N —
GN) {W(n),n>1} arei.id../(0,1). 0 asN — . The constanty(N) in (3) is taken to be

We assume that the observation noise is dominated by the a(N)/b;.

thermal noise in the sensor circuitry which justifies oudi.i  The assumption UD) is of special importance because it leads
noise assumption. (If the noise at different sensors is cOky pest rates in the CLT for the parameter estimate. In prac-
related, then the situation is best modeled as estimation ¢ e, uniformly distributed dithering can be implementad b
parameter of a stochastic process. This is a tough proble(pdrying the threshold of the quantizer by a sawtooth wave.
that we do not address here.) _ _ As long as the phases of the sawtooth wave at the differ-
Signal: The signal is assumed to satisfy the following regu-gn; sampling locations are independent and uniformly dis-
larity constraints. tributed, the i.i.d. random dither assumption is justified.
Al) The signak(x; 8) is thrice differentiable ir@ and once in
X.
A2) The signal|s(x;0)] < b < o for all x € [0,1] and 8 € 3. MAINRESULTS
©. Similarly, its three derivatives w.r.8 and the one 3.1 Consistency and CLT for the Estimate Under Uni-
derivative w.r.tx are bounded by a constant that does noform Dithering
depend orx and®.

. Our first main result is the following.
A3) The function

Theorem 1 Suppose the observations are ag2) and the

1
J(6; 60) = / S(x;0)[s(x; 6p) — S(x; 8)]dx conditions GN), A1)-A3), DS), UD) are satisfied. Then as
/0 N — oo, there exists a sequence of estimdtés} such that
has a unique zero-crossingéit= 6p. 1. P(Tn(Bn) =0) — 1;

The assumption A3) ensures that the parameter estimatio.

problem is well-posed. It basically says that 2. the estimatéy — o almost surely;

3. the following CLT holds
1

/ [s(x; Bo) — S(x; 0)]2dx
0

has a unique minimum &, that is, if there is no noise and S
we collect full precision data over the entire spé@d], then where —> denotes convergence in distribution.

N A B2
(logh) (L) (6n—60) ﬁ‘/’/(O’ {6‘-(5’()(;6))de>
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Figure 1: 1-bit quantization with uniform dithering leadsanly logarithmic rate loss.

_The proof uses elementary facts from probability theoryincurred.
to first establish the almost sure convergencenef®) to The reason for the success of our estimator is not immedi-
J(6;60). The consistency and CLT is then established usately clear. To obtain more insight, consider the simplecas
ing techniques similar to those in the analysis of ML esti-when the observation noise is absent £ 0), s(x;0) = 6,
mators for i.i.d. observations (see [7, Chapter IV]). We doand6 € [—0.5,0.5]. In the absence of dithering, 1-bit quanti-
not present the proof here due to space constraints; it caration gives only one observation value i) and we can
be found in the longer version [3]. However, we discuss thelo no better than estimating the signéf However, with
intuition behind this result and present simulation resb#-  dithering (choosing(N) = 1) the estimate is given by
low.

=z

The main conclusion of the above theorem is that our es- " 1 N 1 )
timator only leads to logarithmic loss with respect to thetbe On =1 . Y(N) = D sign(Bo+Wa(n)).
possible rate of AN. In other words, there is little loss in n=1 n=1
performance with respect to full precision samples. We are
not aware of any work where an estimatorBgfunder a gen-  Since {Wy(n)} are i.i.d. uniform on[-1,1], by the law of
eral signal model based on 1-bit precision samples is andarge numbers we get th@ — 6y almost surely and a CLT
lyzed. Hence, we compare our result with an estimator thatlso holds. In other words, due to dithering, we get a look
can be derived from the results in [6]. In [6], an estimator ofat 8y from a family of 1-bit quantizers and this ‘diversity’
the signals(x; 8p) based or{Y(n)} with a(N) = 0 are given.  helps in obtaining consistency. In the general case, the di-
The estimate of the signal is obtained by local linear filter-versity provided by dithering causdg(6) to converge to
ing of the observations followed by a memoryless non-linead(8; 8) (as is the case for full precision samples). But from
transformation. An estimate @b may be obtained from the assumption A3), we know that8; 6y) = 0 has a unique zero
signal estimate using a least-squares fit. Note that thieis t crossing at = 6y. This leads to existence and consistency
same as solving (3) but using the signal estimate in placef the estimate. The increasing dither magnitai) is re-
of {cqY(n)}. It can be shown (using a proof similar to that quired to remove bias introduced in the estimate by the ther-
of Theorem 1) that such an estimate is consistent (in probmal noise. We do not present a proof of the main result due to
ability) and a CLT holds. The variance in the CLT decaysspace constraints, but we illustrate it in Figure 1 with tefph
like 1/|\|2/3, which is a significant loss compared with the of a simulation. In Figure 1, we plot the mean-square esti-
rate I/N for the full precision case. In comparison, we seemation error as a function & for the case whes(x; 6) = 6
that our estimator requires less computation and by chgosirandg? = 1. The consistency as well as the logarithmic rate
uniformly distributed dither, only a logarithmic rate loiss loss compared to full precision case are evident.
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We have not been able to obtain the best possible rate ifhe main idea in the proof is similar to that in the proof of
the CLT for uniform dither in the general case. However, forTheorem 1. We do not give the proof here.
a specific example, we identify the rate below. We see that the best rate in the CLT is obtained in the
. ) L first case. In this case the variance in the CLT behaves like
Proposition 1 Consider the problem of estimating €  1/N(@-1/dwhich is strictly worse than the rate in Theorem 1.

(0,1] using samplegY(n), 1 < n< N} where, In particular, if the Gaussian dither is chosen, thea3 and
e we get the rate i81=2/3. The higher the value af, the better
Y(n) = sign(6o+a(N)Wg(n) + W (n)) is the rate. Note thaj — o implies that the dither distribu-

. tion is getting closer to the uniform distribution. However
{Wy(n)} and {W(n)} are as in Theorem 1 above. We note . P

L ) - . : the case of uniform distribution is not covered by Theorem
that in this case N(8) = 0 has a unique solution for every N 5

given by, The existence of an optimal rate for the variance in part 3)

By = LN) Y(n). of Theorem 2 is a consequence of a basic principle: increas-
N inga(N) increases variance but decreases bias. By increasing
- a(N), we are expanding the family of 1-bit quantizers being
If a(N) — o and &(N)/N — 0, thenby — 6 in m.s.s. The used for observations and this diversity helps in redudieg t
best possible rate for the decay of the mean-square error isias. However, dithering also makes the observations more
obtained by choosing(&l) such that noisy and the variance of the estimate increases(d3 in-
creases. Hence there is an optimum rateafdt), where the

=z

n=1

i N (a(N) — 60)%\ 1 4 gains of diversity due to dithering, and the ill effects oé th
am 22(N) exp{ — o =+ (4} noise due to dithering are balanced.
and in this case 4. CONCLUSIONS
UN - We proposed a parameter estimate for a general signal model
—— (6 —60) = A (M, a?) based on dithered 1-bit samples. This estimator is motivate
a(N) by the need to design low cost low precision sensors and
) possibility of combining measurements from a multitude of
for constantgu 7 0 and o~ such sensors. The main idea is that the full precision sample

We omit the proof here. We, however, note that for aﬁg?] ?: trr(]? lg‘;?g :ésnu(;teaéasl'ynsoc?r!(ca)?el(—:lglrtnd|ther9 d samples an
. ) S ; putation than the ML

choice ofa(N) as in Theorem 1, the limit in (4) is zero. Thus estimate in the full precision case. The estimate is caarsist
tlhe rate in Praposition 1 is strictly better than that in Tieso for a wide class of dither distributions. But the uniform-dis

' tribution leads to the best rate in the CLT amongst a broad
3.2 Optimality of Uniform Dithering cla_ss of dither distributio_ns. S(_averal other pro_pertieshe_f

’ estimate are also established in a longer version of this pa-
Now we address the question of whether a different ditheper ([3]). In particular, due to the hard-limiting operatio
distribution can improve the rate of convergence even furinvolved in 1-bit sampling, the estimate is also robust and r
ther. Theorem 2 shows that we cannot do better than uniformmains consistent even for noise with infinite variance. We
dithering for a class of distributions. have also analyzed the effect of random sampling, inaceurat

. nowledge of sampling locations, and unreliable communi-
Theorem 2 Suppose the conditions GN), A1)-A3), DS) and.ation of observations in 13].

NUD) are true. Then there exisf$} such that as N— o

1. P(Tn(6n) =0) — 1, Acknowledgement
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e Ifa(N) = BNY/(29), then,
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