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ABSTRACT

Space-time block coding (STBC) is a recent appealing so-
lution to the problem of exploiting transmit diversity in
multi-antenna systems for communications over flat fading
channels. In a standard STBC scheme the receiver requires
Channel State Information (CSI), which can be acquired via
training at the expense of a reduced information rate. Alter-
natively, the requirement of CSI can be avoided altogether
by using differential encoding. The existing trained or dif-
ferential schemes for STBC assume that the channel is time-
invariant during the transmission of at least two data blocks.
However, wireless channels may be often time varying owing
to frequency offsets induced by either Doppler shifts or car-
rier frequency mismatches. In this paper we present a simple
trained STBC scheme for fading channels with frequency off-
sets.

1. INTRODUCTION, PRELIMINARIES AND
PROBLEM STATEMENT

1.1. Channel Model

We consider a wireless communication system with m receive
and n transmit antennas. Let t = 1, 2, . . . be the discrete-
time index expressed in units of the sampling interval. Also,
let Akp denote the fading coefficient from the p-th transmit
antenna to the k-th receive antenna, and let ωk be the (an-
gular) frequency offset between the k-th receive antenna and
the transmit antennas. We assume that ωk is the same (or
nearly so) for all transmit antennas. This should be true
for the part of ωk induced by a possible carrier frequency
mismatch between the transmit and receive oscillators. The
previous assumption should also be valid for the Doppler
shift part of ωk provided that the multipath components ar-
riving at the receive antennas have similar angles of arrival
[7]. Making use of the notation and assumptions introduced
above, we can model the output of the receive array as (see
[7] for a detailed derivation of the equation below):

y(t) =

 eiω1t 0
. . .

0 eiωmt

 A z(t) + e(t) (1)

where z(t) is the transmitted (baseband) signal, A = {Akp},
and e(t) denotes a noise term. We assume that {ek(t); for k =
1, . . . m; t = 1, 2, . . .} is a sequence of i.i.d. Gaussian random
variables with mean zero and common variance σ2.
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1.2. Brief Review of STBC

Let {sk}P
k=1 denote the symbols that we want to transmit in

the block b (we omit the dependence of sk on b to simplify
notation). In a STBC scheme this is done by transmitting a
space-time block (for b = 0, 1, 2, . . .):

Zb = [z(Nb + 1) . . . z(Nb + N)] (n×N) (2)

that depends on {sk}P
k=1. Following [3, 10] we let Zb depend

linearly on {sk}:

Zb =

P∑
k=1

[Bk Re(sk) + i Ck Im(sk)] (3)

The matrices {Bk, Ck} in (3) are chosen such that ([2, 3, 4,
5, 10])

ZbZ
∗
b =

(
P∑

k=1

|sk|2
)

I (4)

where the superscript ∗ denotes the conjugate transpose.
The property in (4) of STBC plays a key role in the sim-
plification of the maximum likelihood detector (MLD) for
the transmitted symbols (see [3, 10] for details).

However the MLD relies on the assumption that the re-
ceiver knows A and {ωk} or at least can estimate them ac-
curately. This aspect is discussed next.

1.3. Problem Statement and Discussion of Existing
Blind and Differential Schemes

Under the assumption that ωk = 0 (k = 1, . . . , m), the chan-
nel fading matrix A can be estimated using one or more pilot
blocks. A can also be estimated blindly (using only one pilot
symbol) or semi-blindly (combining the trained and blind
schemes), see the recent paper [8]. The main goal of the
present paper is to introduce a simple training-based scheme
for the estimation of both A and ωk, which should be the
right thing to do in those applications where the frequency
offsets cannot be ignored. Owing to the fact that usually
transmit diversity is employed when the receiver has rather
limited computational capabilities, we aim to keep the com-
plexity of our trained STBC scheme as low as possible.

We end this section with a brief discussion of differential
encoding as an alternative to acquiring CSI at the receiver
via training (in this case the acquired CSI is used in the MLD
of a standard STBC scheme. Let us first consider the case
in which the frequency offsets are negligible. In a differential
scheme (for ωk = 0), the information-bearing block Zb is not
transmitted directly; instead, it is differentially encoded in
such a way that the MLD based on two consecutive blocks



does not require CSI. Differential STBC schemes achieving
this desideratum were recently suggested in [6, 9]. Compared
with a trained scheme, a differential scheme does not trans-
mit pilot symbols and hence does not sacrifice information
rate. On the other hand, if trading-off information rate for
BER performance is what we would like, a trained scheme
will do whereas a differential one will not. Additionally, a dif-
ferential scheme requires unitary symbols (see [6, 9]), while a
training-based one has no such restriction. Hence we believe
that a differential STBC scheme (such as the ones in [6, 9])
may be useful in fast fading scenarios; otherwise a trained
scheme may be preferred .

In the perhaps more practically relevant case in which the
frequency offsets cannot be ignored, we can think of using
double differential encoding in an attempt to avoid the need
for CSI at the receiver site. A double differential scheme
was recently suggested in [7] for a class of group codes that
does not include the STBC considered in this paper. The
cited paper trades-off BER performance for computational
simplicity. More precisely, the code matrices considered in [7]
are diagonal, which limits the achievable BER performance.
This resulting performance loss adds to the loss induced by
the fact that the detector used is not the MLD (the MLD for
double differential encoding is computationally involved even
in the single antenna case [11]). Furthermore, our attempts
to extend the double differential scheme of [7] to STBC (with
non-diagonal code matrices {Zb}) failed to provide a detector
with a low complexity. Consequently a trained scheme (such
as the one proposed in what follows) may be the way to
go whenever the frequency offsets are deemed to be non-
negligible.

2. TRAINED STBC SCHEME

Let a∗k denote the k-th row of A, and let

y∗k(b) = [yk(Nb + 1) . . . yk(Nb + N)]

e∗k(b) = [ek(Nb + 1) . . . ek(Nb + N)] (5)

Using this notation we can write the data equation (1) (for
t = Nb + 1, . . . , Nb + N) as follows:

y∗k(b) = eiωkNba∗kZbΩk + e∗k(b) (k = 1, . . . , m) (6)

where:

Ωk =

 eiωk 0
. . .

0 eiNωk

 (7)

Assume that Zb+1, . . . , Zb+L are pilot blocks, which hence are
known to the receiver (the receiver also knows the time when
the transmitter launches the pilot blocks into the channel).
We would like to use the pilot blocks and the corresponding
received signals, {yk(b+1), . . . ,yk(b+L)}m

k=1, to estimate A
and {ωk}. Note that in general we need L ≥ 2 to guarantee
the identifiability of both {ak} and {ωk} in (6).

Owing to the assumption made on the noise term in (6),
the ML estimates of ak and ωk, for given Zb+1, . . . , Zb+L are
obtained by minimizing the following criterion:

L∑
l=1

‖yk(b + l)− Ω∗kZ∗b+le
−iωkN(b+l)ak‖2 (8)

As we will see shortly the minimization of (8) becomes sim-
pler if

Zb+1 = . . . = Zb+L , Z (9)

and

Z is a square unitary matrix (10)

To simplify the computations involved, and for lack of a bet-
ter choice of the pilot blocks, we choose {Zb+l}L

l=1 to satisfy
(9). Note that if the pilot blocks were chosen as STBC ma-
trices, then satisfying (10) would be possible only for very
few values of n. To satisfy (10) for any value of n we do not
choose the pilot blocks as STBC matrices but let the pilot
block Z to be any unitary n× n matrix. That is:

Z∗Z = ZZ∗ = In×n (11)

(Z can possibly be scaled to satisfy a transmit power con-
straint).

Following the previous discussion, we assume that {Zb+l}L
l=1

in (8) satisfy (9) and (10). Consequently, we can write the
criterion in (8) as:

L∑
l=1

‖ZΩkyk(b + l) − e−iωkNl(e−iωkNbak)‖2 (12)

The minimization of (12) with respect to ak yields:

âk =
eiωkNb

L
ZΩk

L∑
l=1

eiωkNlyk(b + l) (13)

Inserting (13) in (12) gives the following function which is to
be minimized with respect to ωk:∥∥∥∥∥∥∥

I − 1

L

 e−iNωkI
...
e−iNLωkI

 [eiNωkI . . . eiNLωkI]


×

 ZΩkyk(b + 1)
...
ZΩkyk(b + L)


∥∥∥∥∥∥∥

2

= const. − 1

L

∥∥∥∥∥
L∑

l=1

eiNlωkZΩkyk(b + l)

∥∥∥∥∥
2

(14)

= const. − 1

L

∥∥∥∥∥
L∑

l=1

eiNlωkyk(b + l)

∥∥∥∥∥
2

(15)

Note that if either (9) or (10) were not true then we would
have to work with a criterion which would be a more com-
plicated function of ωk than (15) 1.

It follows from (15) that the estimate of ωk is to be ob-
tained by solving the maximization problem:

max
ωk

∥∥∥∥∥
L∑

l=1

eiωkNlyk(b + l)

∥∥∥∥∥
2

(16)

In general estimation of ωk by maximizing (16) is still a
bit complicated as it requires a (one-dimensional) nonlinear
search. However for L = 2, a closed form expression for
ωk can be obtained (see below). For L > 2, to avoid the
nonlinear search needed to maximize (16) we can choose L
to be even (L = 2K) and approximate the maximizer of (16)
as described below.

1To arrive at (15) from (14) it is not necessary that Z is a
STBC. All that is necessary is that Z is unitary.



2.1. The case of L = 2

The criterion (16) with L = 2 has the following simple form:

‖yk(b + 1) + eiNωkyk(b + 2)‖2

= const. + 2 Re [e−iNωky∗k(b + 2)yk(b + 1)] (17)

The value of ωk that maximizes (17) is readily seen to be

ω̂k =
arg [y∗k(b + 2)yk(b + 1)]

N
(18)

The corresponding channel estimate is obtained from (13):

âk =
eiω̂kNb

2
ZΩ̂k [eiNω̂kyk(b + 1) + ei2Nω̂kyk(b + 2)] (19)

Note that in most cases ωk is sufficiently small such that
ωkN ≤ 2π. However, if this condition deemed to be invalid
in a particular situation, then the simple estimator in (18)
should not be used since it will be affected by aliasing. In
the latter case, we may let Zb+l depend on l and use the
frequency estimate obtained by minimizing the (1D) function
of (14) in lieu of that in (15).

2.2. The case of L = 2K (K > 1)

In this case we can split the training data set in non-overlapping
pairs, {yk(b+1),yk(b+2)}, . . . , {yk(b+2K−1),yk(b+2K)},
estimate ωk and ak from each pair separately using (18) and
(19) and average the K so-obtained estimates. While in gen-
eral the estimates of {ωk and ak} derived in this way are not
exact ML estimates, they have lower mean squared error (by
a factor of K) than the estimates obtained from just one
data pair (this follows easily from the assumptions made on
the noise in (6)) and they are easy to compute.
To summarize:

• In a fast fading scenario we choose L = 2 and estimate
{ωk,ak} using (18) and (19).

Note that the two training blocks used for acquiring
CSI at the receiver do not have to be adjacent to one
another. For instance, they can be separated by a
STBC data block as shown in Figure 1.

n N >= n

Training

Block
Block

Block

Training

Block

Data

STBC

Data
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Figure 1: Transmission scheme for fast fading.

The estimation formulas in (18) and (19) can be easily
modified to take into account the fact that the trans-
mission rate of the scheme in Figure 1 is P/(N + n),
which for N = n = P becomes 1/2. Also note that
the scheme relies on the assumption that the channel
(i.e, A and {ωk} ) is nearly constant over these blocks
(which is basically what a double differential scheme
would also require).

• For slow fading scenarios we can choose L = 2K with
K > 1 and estimate {ωk,ak} by the averaging tech-
nique outlined in Section 2.2.

Alternatively, to avoid reducing the transmission rate
too much, we can choose L = 2 but unlike the scheme
in Figure 1 we insert more than one data block in
between the two training blocks. Several other alter-
native schemes are possible when the fading is not
too fast. While we will not dwell into their details,
the point we want to make is that a training-based
scheme can use the information that the fading is slow
to improve the BER performance (possibly at the cost
of transmission rate), whereas a (double) differential
scheme does not have this flexibility.

The so-obtained estimates {ω̂k, âk} are used in the MLD,
in lieu of the true unknown values {ωk,ak} to detect the
information-bearing symbols transmitted until a new set of
pilot blocks is launched into the channel.

3. NUMERICAL EXAMPLES AND
CONCLUDING REMARKS

In this section we consider the use of the trained STBC
scheme discussed in the previous section in a fast fading
channel. We consider a system with two transmit anten-
nas and one receive antenna. We assume that the frequency
offsets {ωk} are random variables with uniform distribution
that lie between 0 and 0.5 radians. The complex channel
coefficients {Akp} are assumed to be i.i.d. Gaussian random
variables with mean zero and variance 1. This channel model
is the same as the one used in [7].

The transmission scheme is as in Figure 1, that is we
transmit one training block Z = I2×2 followed by a data
block. This is followed by another training block and so on.
Thus the effective rate is 1/2. We use the two training blocks
adjacent to a particular data block to estimate the channel
for that particular data block. In this way we can allow for
fast fading channels. The STBC block is an Alamouti code
[1] with QPSK constellation. We normalize the STBC such
that the corresponding (total) transmitted power is equal to
2, as for the pilot blocks. Since our transmission scheme has
rate 1/2 the effective spectral efficiency is 1 b/s/Hz. Simula-
tions were done for 10000 independent channel realizations.
In each realization 10 data blocks were transmitted. In Fig-
ure 2 we have plotted the Bit Error Rate (BER) for different
values of the bit SNR. Plotted also for comparison is the
BEP of the double differential scheme in [7] with the same
spectral efficiency and total transmit power.

From the figure it can be seen that the new scheme out-
performs the one in [7] by about 3 dB. Moreover the space-
time block codes we have used are simpler to decode.

Finally we remark on the fact that the codes we have con-
sidered so far are orthogonal space-time block codes. How-
ever the algorithm developed in this paper for channel esti-
mation can be applied to any type of space-time code. In
particular the code matrices need not be unitary nor square.
The available differential/double differential schemes require
the code matrix to be square and unitary.
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Figure 2: Bit Error Rates for the proposed detection scheme
and the scheme in [7]


