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Abstract—We consider the application of sequential Monte Carlo (SM-
C) methodology to the problem of joint mobility tracking and soft hand-
off detection in cellular wireless communication networ ks based on the pi-
lot signal strength measurements. The dynamics of the system under con-
sideration are described by a nonlinear state-space model. Mobility track-
ing involves an on-line estimation of thelocation and velocity of the mobile,
whereas handoff detection involves an on-line prediction of the pilot signal
strength at future timeinstant. The optimal solution to both problemsis
prohibitively complex due to the nonlinear nature of the system. The se-
quential Monte Carlo (SMC) methods are therefore employed to track the
probabilistic dynamics of the system and to make the corresponding esti-
mates and predictions.

|. INTRODUCTION

Mobility tracking and handoff detection are two important is-
sues in mobility management for cellular networks [1], [2]. S
ince, both mobility tracking and handoff detection are based on
the averaged signal strength measured at mobile station (MS),
we thereforein this paper consider the problem of joint mobility
tracking and soft handoff detection. Such aproblemis essential-
ly aproblem of on-line estimation and detection in a nonlinear
dynamic system.

The problem will be solved under a Bayesian framework,
where on-line posterior distribution of the location and veloci-
ty will be estimated, and then used for soft handoff detection.
However, for the nonlinear dynamic system considered here, an
exact evaluation of this posterior distribution is analytically in-
tractable. Therefore, we resort to the sequential Monte Carlo
(SMC) technique for numerical computation. The sequential
Monte Carlo (SMC) methodology [3] recently emerged in the
fields of statistics and engineering, has shown a great promise
in solving awide class of nonlinear filtering problems.

To infer the location and velocity information from the noisy
observation, anonlinear state-space model isfirst derived for the
dynamic system under consideration. A novel SMC estimator
is then developed to calculate the posterior distribution of the
location and velocity. We propose a novel locally optimal soft
handoff scheme, which requires the prediction of future signal
strengths. A SMC predictor, built on top of the SMC mobili-
ty tracker is then developed to calculate the probability distri-
butions required by the proposed soft handoff detector. Finaly,
simulation results are provided to demonstrate the superiority of
the proposed techniques over the existing methods for mobility
tracking and soft handoff detection.
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Il. MoBILITY MODEL IN CELLULAR NETWORKS

A. Motion Equation

We consider the modeling of a mobile user’s movement on a
two-dimensional plane. Assume that observations are taken at
discretetime pointst;, = to + At - k. Denote z; and y;, asthe
horizontal and the vertical coordinates of amobile’srandom po-
sition at time¢y,; v, and v, , asthe corresponding velocities at
timet;. Following[1], the motion model can be expressed as
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that is,
xp = Azxp_1 + Byup + Bywy, 2

whereu;, 2 [z K, Uy x]" denotesthe unexpected changesin ac-

celeration; ry, 2 [rs5, 7y1]" denotesthe random changesin ac-
celeration. The unexpected acceleration u; can bemodeled asa
Markov chain with afinite number of states, S1, S, ..., S, as
possible discretelevel s of acceleration. Thetransition probabili-
ty 6;; 2 P(up = Sjlur_1 = S;) canbeapproximated by aval-
uep near unity for i = j,and (1—p)/(m—1) fori # j, inmany
tracking situations [1]. The random acceleration =, is modeled
as a Gaussian random vector to cover the “gap” between adja-
cent acceleration states. To represent the correlation feature of
thisrandom acceleration, afirst-order AR model is adopted, i.e.,
Try1 = arg + wy, Wherewy, ~ (0,02 1).

B. Measurement Equation

In existing cellular systems, the distance between the mobile
and a given base station (BS) can be inferred from the forward
link RSSI (or received signal strength indication) signal, which
isthe average of the pilot signal strength received at the mobiles.
It is assumed that the rapid fluctuation of multipath fading isre-
moved by the averaging operation.

Denote p;. ; as the RSSI signal received by a given mobile
from the i-th BS at time¢;,. To locate a mobile user on the two-



dimensional plane, at least three independent distance measure-
ments are needed. In this paper, we select the three largest mea-
surements to form the observation vector, which is a nonlinear
function of the state vector =, in (2), i.e,,

Yg 2 [Pr,1: Pr,2, Pr,3)" = h(xg) + vk, (3)
with
h(zy) = [hi(zr), ha(zr), ha(xr)]",
Vg = [Uk,lavk,Qavk,B]Ta
hi(zr) = poi—dnlog[(zr — a:i)” + (yx — b:)°],

where pg ; is a constant determined by the transmitted power,

the wavelength, and the antenna gain of the i-th BS; (a;, b;) is
the position of the i-th BS;  is a path-lossindex; and v, ; isthe
logarithm of the shadowing component. The shadowing compo-
nent vy, ; isassumed to be uncorrel ated both intime and in space,
and have a Gaussian distribution, i.e., v; ; ~ N(0, 3).

I1l. SOFT HANDOFF INITIATION IN CELLULAR NETWORKS

Handoff is the mechanism that transfers an ongoing call from
one cell to another as a user moves through the coverage area of
a cellular system. Handoff initiation and admission control are
the two stepsto make a handoff. In this paper, however, we will
focus only on the problem of soft handoff initiation for mobile
users.

Soft handoff is an important feature for cellular CDMA net-
works, which provides added diversity and improved signal
quality. At any time, the group of BSs connected to a particular
mobileis called the active set of this mobile. In the convention-
al soft handoff algorithm [4], handoff decision is made by com-
paring the pilot signal strength with some thresholds, which is
simple but bears no optimality.

The optimal soft handoff algorithm should best tradeoff a
mong the average size of active set, the number of active set up-
dates and the SD (system degradation). In [2], the number of
service failures is used as the SD metric. In what follows, we
use the outage probability asthe SD metric. An outage happens
whenever the pilot signal strength is below somethreshold. The
threshold ischosento bethe expected signal power whenthemo-
bileis moving out of its BS's desired coverage.

.1 Optimization Based on Outage Probability

We consider the optimal soft handoff algorithm based on the
best trade-off among the rate of active set update, the average ac-
tive set size and the outage probability. Denote A asthe active
set at time k. A handoff policy over a certain trajectory can be
expressedas® = {A;,..., Ax}, where N isthe total number
of observationsalong thetrgjectory. Thethree performance met-
rics can be expressed as:

1. Rate of active set update
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2. Average active set size
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3. Prabability of outage

N
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where (6) followsfrom the definition of an outage event: an out-
age occursiif all pilot signals from the BSsin the active set are
below athreshold A. This threshold is chosen to be the expect-
ed pilot signal strength when the mobileison the boundary of its
BS'sdesired coverage.

Let the cost of an outage event be unit, the cost of maintaining
one extramember in the active set be ¢ 4, and the cost of one ac-
tive set update be cgy. Considering alinear cost combination, the
Bayesian cost over the trgjectory is then

L’]((I)) = /\out(q)) + CH)\H(CD) =+ CA)\A((I)). (7)

The optimal soft handoff algorithm minimizes this cost over all
possible handoff policies ®. Since the computation of this cost
requires prior knowledge of the entire trajectory, alocally opti-
mal (LO) handoff algorithm was suggested in [2]. The objective
of the LO algorithm isto minimizethe expected incremental cost
at time k, which can be expressed as

Agy1 = ag min Ji, 8)
Akt
with L/]k = E[Jincr(Ak-I-l) |Yk]
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Implementation of the LO algorithm involves evaluation of (9)
for all possible Ax41. To simplify the algorithm, the following
rules help to narrow down the number of possihilitiesto three. 1)
At each time instant, the change of the active set size can be at
most one. 2) Anincoming candidate BSto the active set, By, ;,
must have the strongest signal strength among the ones outside
the active set. 3) An outgoing BS, By, ,.:, must have the largest
probability to experience an outage event at timek + 1, i.e,

Bk,out = argZI'Ielii(P(pk_H’i < AlYk) (10)
Then the LO soft handoff agorithm is to minimize the incre-
mental cost (9) among the following three possibilities, i.e., 1)
Ary1 = A 2) Agy1 = AU Brin: 3) Ar+1 = Ar \ B out-
It isseenthat the major computationinvolved in theimplementa-
tion of the proposed handoff algorithmsisto solvethe following
prediction problems.

P < Max ppipi < A Yk) .

1€EAR41



IV. JOINT MOBILITY TRACKING AND HARD HANDOFF
DETECTION

Fromthe previous sections, it is seen that both mobility track-
ing and handoff detection are based on the received pilot signal
powersY ;. Under the nonlinear state-space model given by (2)
and (3), the optimal estimates of the location and the vel ocity of
the mobile can be made. In addition, the optimal handoff algo-
rithms developed in Section |11 make use of the predicted signal
strengthsin future time instants, which can be obtained from the
same state-space model. Therefore, it is natural to consider the
problem of joint mobility tracking and handoff detection. The
problem will be solved under a Bayesian framework. That is,
Bayesian inference of the mobile’slocation and velocity will be
made from the on-line observation of the pilot signal strength-
s, and it will be further used to implement the optimal handoff
algorithms.

A. SMC Estimator for Mobility Tracking

Denote z;, = (mk,uk), X, = (:Bo,...,:)ﬁk), U, =
(wo,...,up) and Zj (zo,...21). We are interested in
the on-line estimation of the posterior distribution p(Z|Y 1,).
Based on the framework of sequential Monte Carlo (Sl\/l C) tech-
nique [3], we need a set of &ampl%{(zgf), (J)) ., properly
weighted w.r.t. the distribution p(Z 1, |[Y'x). The MM SE estima-
tor of the location and velocity can then be approximated by

M
1
E(a | Vi) = o af vl (11)
ji=1

with W, = E w(]).
Following the framework of the sequential important sam-
pling method, first, we choose the trial distribution ¢(-) to be
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More specifically, we have
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We next summarizethe SMC algorithm for mobility tracking as
follows. At the k-th recursion,

Gl Forj=1,---,M: '
« Drawn asampleu’’ from P(uy|u'!’ ) given a priori;

« Drawn asample:n(j) from p(azk|az§f)1, u§j>) given by (14);
o« Formz\) = {z0) )y
. Updatethewerghtw(]) = wé Dy | w(J)) by (15);

G2. Implement the resamplmg procedure [5] if the effective

sampling sizeM;c 1+ M < M/10, where v? isthe coefficient
of variation of the important weights.

B. SMC Predictors for Handoff Detection

For ageneral prediction problem, supposewe areinterestedin
computing the posterior distribution p(Z41|Y ). For the new
target distribution p(Z41|Y1,), choose the new trial distribu-
tion 4(-) to be

=) | z0)

=) A (J)
= ( |Yk) (Zk+1|Zk aYk)

1(Zy41 | Y5) (16)

where {(Z, 7z ~(]))}M , are sampled from the mobility tracker
and properly Werghted w.r.t. the distribution p(Z, |Yx). Then,
the important weight is given by

()

The trial distribution given in (16) implies the following steps

to obtarnthesempleﬁ{zgfﬂ}jM:l. Attimek,

H1. Duplicate a set {(Z(j) (J>)

hility tracker [G1-G2]), to form theset{(Z(]) ~(]))} :

j=1, (obtained from the mo-

j=D
H2. Forj=1,...,M,do '
« Drawn asempleu,ﬂz1 from P(uk+1|ﬂ );

. Drawnasempleaskj1 from p(& 1|7} ,ugjjl)

() =) ~
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Based on (17), the samples {(ijl,a;”)}jf”:l are properly
weighted with respect to the target distributionp(Z 41 |Y1).

Following the sampling procedure [H1-H2], we can obtain a
set of samples {(chil, ~(J)) j=1, properly weighted with re-
spect to the distribution p(Zx41 |[Yr). With these weighted
samples, the objective predictive probability (11) can then be ap-
proximated by

P ﬂ Pr+1, < A | Y,
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Equation (18) followsfrom the observation model (3) andtheas-
sumption that the shadowing is a Gaussian random variable un-
correlated in space.

R
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V. SIMULATION RESULTS

To examine the performance of the proposed mobility track-
ing and handoff schemes, simulations are performed for the
conventional hexagon cellular network system. Simulation pa-
rameters are summarized in Table . In order to cover the
range of dynamic acceleration [—10m/s?, 10m/s?], five levels
(0, £4, £8)m/s? are selected as the states of the driving com-
mand. We consider a simulation environment where the mobile
trajectory isgenerated randomly and then fixed for therest of the
simulation; the pilot signals are generated randomly for 50 sim-
ulation realization.

TABLE |
SIMULATION PARAMETERS

Parameters | Comments

At = 0.5s | Sampling interval

a=0.6 Correlation coefficient defined in (2)
02, = 0.72 | Varianceof wy definedin (2)
p=0.9 Transition probability 6; ;

oq = 5dB variance of the lognormal shadowing
po,; =90 Base station transmission power
n=3 Path-loss index

A = —1dB | Threshold of outage event

A. Results of Mohility Tracking

In Table Il, the performance of the SMC mobility estimator
(112) is compared with that of the MEKF, with different number
of Monte Carlo samples employed by the SMC algorithm. The
performanceisevaluatedintermsof the normalized mean square
error (NM SE) of the mobile position. It is seen that with reason-
able number of samples (e.g., M = 250), the SMC estimator is
about 5 — 6dB better than the MEKF estimator.

TABLE I
NM SE oF THE SMC AND THE MEKF TRACKERS.

SMC(dB) MEKF
M =100 [ 250 [ 500 [ 800 (dB)
| —27.0 [ -32.0] -333 [ -326 | —-274 |

B. Results of Soft Handoff

In this simulation, the following two soft handoff algorithms
are implemented.
« Thestaticthreshold soft handoff strategy in[4] isimplemented
with the add threshold chosen from —5dB < Pyg < 5dB, the
relative drop threshold chosen from —10dB < Pyrop — Padd <
—1dB, and afixed timer setto be Ty = 5.
o Thelocaly optimal (LO) soft handoff strategy based on the
outage probability [cf. Section 111-.1] is implemented with the
handoff cost chosen from ¢y € {0.01, 0.03, 0.06, 0.1, 0.2}
and afixed relativecost ¢4 /ey = 0.5.
The objective of the soft handoff is to best tradeoff among the
average size of active set A 4, the number of active set updates
N Ag, and the outage probability Aoy In Figure 1, the trade-off
among the three metrics (N A g7, Aa, Aout) are demonstrated for
both strategies for various threshold and cost parameters. It is
seen that comparing with the LO algorithm, the static threshold
handoff algorithm achieves the same system quality (in terms of

outage probability) at the penalty of a larger handoff rate and a
larger number of activeset size. Furthermore, Bayesian cost giv-
enby (7) of different static handoff schemeare cal culated and de-
picted in Figure 2. It is seen that the minimum cost is 18.7930.
On the other hand, the LO soft handoff scheme is unique with
the selected parameters {c4, cy}, and has a Bayesian cost of
15.9203. Evidently, the LO algorithmincursasmaller cost com-
pared with the static soft handoff algorithm, and therefore makes
abetter trade-off between service quality and system resource u-
tilization.

————— LO soft handoff
- [+ static soft handoff

50
average size of active set

number of handoffs

Fig. 1. A comparison of the tradeoff surface of the locally optimal soft handoff
agorithm and that of the static threshold soft handoff algorithm.
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Fig. 2. Bayesiancost (c4 = 0.01, cy = 0.005) of the static threshold soft
handoff algorithms over different sets of thresholds, where P,jq denotesthe

addthreshold; Pyrop — Pagq denotesthedifference betweentheadd threshold
and the drop threshold.
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