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Abstract—We consider the application of sequential Monte Carlo (SM-
C) methodology to the problem of joint mobility tracking and soft hand-
off detection in cellular wireless communication networks based on the pi-
lot signal strength measurements. The dynamics of the system under con-
sideration are described by a nonlinear state-space model. Mobility track-
ing involves an on-line estimation of the location and velocity of the mobile,
whereas handoff detection involves an on-line prediction of the pilot signal
strength at future time instant. The optimal solution to both problems is
prohibitively complex due to the nonlinear nature of the system. The se-
quential Monte Carlo (SMC) methods are therefore employed to track the
probabilistic dynamics of the system and to make the corresponding esti-
mates and predictions.

I. INTRODUCTION

Mobility tracking and handoff detection are two important is-
sues in mobility management for cellular networks [1], [2]. S-
ince, both mobility tracking and handoff detection are based on
the averaged signal strength measured at mobile station (MS),
we therefore in this paper consider the problem of joint mobility
tracking and soft handoff detection. Such a problem is essential-
ly a problem of on-line estimation and detection in a nonlinear
dynamic system.

The problem will be solved under a Bayesian framework,
where on-line posterior distribution of the location and veloci-
ty will be estimated, and then used for soft handoff detection.
However, for the nonlinear dynamic system considered here, an
exact evaluation of this posterior distribution is analytically in-
tractable. Therefore, we resort to the sequential Monte Carlo
(SMC) technique for numerical computation. The sequential
Monte Carlo (SMC) methodology [3] recently emerged in the
fields of statistics and engineering, has shown a great promise
in solving a wide class of nonlinear filtering problems.

To infer the location and velocity information from the noisy
observation, a nonlinear state-space model is first derived for the
dynamic system under consideration. A novel SMC estimator
is then developed to calculate the posterior distribution of the
location and velocity. We propose a novel locally optimal soft
handoff scheme, which requires the prediction of future signal
strengths. A SMC predictor, built on top of the SMC mobili-
ty tracker is then developed to calculate the probability distri-
butions required by the proposed soft handoff detector. Finally,
simulation results are provided to demonstrate the superiority of
the proposed techniques over the existing methods for mobility
tracking and soft handoff detection.
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II. MOBILITY MODEL IN CELLULAR NETWORKS

A. Motion Equation
We consider the modeling of a mobile user’s movement on a

two-dimensional plane. Assume that observations are taken at
discrete time points

�����������
	��
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. Denote � � and � � as the

horizontal and the vertical coordinates of a mobile’s random po-
sition at time

� �
; ����� � and ����� � as the corresponding velocities at

time
���

. Following [1], the motion model can be expressed as����� ����! �" �#  �" �$ ��&%'" �# %'" �
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where
e �kj�ml n ��� ��i n �o� �'prq denotes the unexpected changes in ac-

celeration; s � j�ml t ��� � i t �o� � puq denotes the random changes in ac-
celeration. The unexpected acceleration

e �
can be modeled as a

Markov chain with a finite number of states, v _�i vBw i�x�x�x�i v2y , as
possible discrete levels of acceleration. The transition probabili-

ty z'{}| j��~���e � � vK|�� e �o^�_ � v2{�� can be approximated by a val-
ue � near unity for � ��� , and

���2� �2��� ������� � for ������ , in many
tracking situations [1]. The random acceleration s � is modeled
as a Gaussian random vector to cover the “gap” between adja-
cent acceleration states. To represent the correlation feature of
this random acceleration, a first-order AR model is adopted, i.e.,s ���`_
��� s ���Yg�� , where

gd������� i�� wf�� � .
B. Measurement Equation

In existing cellular systems, the distance between the mobile
and a given base station (BS) can be inferred from the forward
link RSSI (or received signal strength indication) signal, which
is the average of the pilot signal strength received at the mobiles.
It is assumed that the rapid fluctuation of multipath fading is re-
moved by the averaging operation.

Denote � � � { as the RSSI signal received by a given mobile
from the � -th BS at time

� �
. To locate a mobile user on the two-



dimensional plane, at least three independent distance measure-
ments are needed. In this paper, we select the three largest mea-
surements to form the observation vector, which is a nonlinear
function of the state vector

\ �
in (2), i.e.,� � j� l � � � _�i � � � w i � � � � p q ���?� \ � � � � �¡i (3)
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� � �S�®¯ { � w'° i
where � � � { is a constant determined by the transmitted power,

the wavelength, and the antenna gain of the � -th BS;
�±­ { i ¯ {²� is

the position of the � -th BS;
¦

is a path-loss index; and � � � { is the
logarithm of the shadowing component. The shadowing compo-
nent � � � { is assumed to be uncorrelated both in time and in space,
and have a Gaussian distribution, i.e., � � � { ��³���´ i�� wµ � .
III. SOFT HANDOFF INITIATION IN CELLULAR NETWORKS

Handoff is the mechanism that transfers an ongoing call from
one cell to another as a user moves through the coverage area of
a cellular system. Handoff initiation and admission control are
the two steps to make a handoff. In this paper, however, we will
focus only on the problem of soft handoff initiation for mobile
users.

Soft handoff is an important feature for cellular CDMA net-
works, which provides added diversity and improved signal
quality. At any time, the group of BSs connected to a particular
mobile is called the active set of this mobile. In the convention-
al soft handoff algorithm [4], handoff decision is made by com-
paring the pilot signal strength with some thresholds, which is
simple but bears no optimality.

The optimal soft handoff algorithm should best tradeoff a-
mong the average size of active set, the number of active set up-
dates and the SD (system degradation). In [2], the number of
service failures is used as the SD metric. In what follows, we
use the outage probability as the SD metric. An outage happens
whenever the pilot signal strength is below some threshold. The
threshold is chosen to be the expected signal power when the mo-
bile is moving out of its BS’s desired coverage.

.1 Optimization Based on Outage Probability

We consider the optimal soft handoff algorithm based on the
best trade-off among the rate of active set update, the average ac-
tive set size and the outage probability. Denote ¶ � as the active
set at time

�
. A handoff policy over a certain trajectory can be

expressed as · �¹¸ ¶ _ i�x�x�xºi ¶S»�¼ , where ½ is the total number
of observations along the trajectory. The three performance met-
rics can be expressed as:
1. Rate of active set update¾H¿ � ·�� � E À �½ »Á��Â`_HÃ � ¶ � �� ¶ ���`_ ��Ä x (4)

2. Average active set size¾¡Å � ·�� � E À �½ »Á��Â`_ � ¶ � � Ä x (5)

3. Probability of outage¾
out
� ·�� � �½ »Á��Â`_¡ÃÇÆ È{�É Å 1 � � � {�Ê
Ë�Ì i (6)

where (6) follows from the definition of an outage event: an out-
age occurs if all pilot signals from the BSs in the active set are
below a threshold Ë . This threshold is chosen to be the expect-
ed pilot signal strength when the mobile is on the boundary of its
BS’s desired coverage.
Let the cost of an outage event be unit, the cost of maintaining
one extra member in the active set be Í Å , and the cost of one ac-
tive set update be Í ¿ . Considering a linear cost combination, the
Bayesian cost over the trajectory is thenÎ � ·�� � ¾ out

� ·�� � Í ¿ ¾ ¿ � ·�� � Í Å�¾HÅ � ·�� x (7)

The optimal soft handoff algorithm minimizes this cost over all
possible handoff policies · . Since the computation of this cost
requires prior knowledge of the entire trajectory, a locally opti-
mal (LO) handoff algorithm was suggested in [2]. The objective
of the LO algorithm is to minimize the expected incremental cost
at time

�
, which can be expressed as¶ ���`_ �

arg ÏÑÐ=ÒÅ 1ºÓKJ Î �¡i (8)

with
Î � j�

E
lÕÔ {=ÖØ×�Ù � ¶ ���`_ ����Ú ��p�

E Û 1 Q ÃÝÜÞ È{�É Å 1�ÓGJ � ���`_ � {hÊ�Ë�ßà� Í ¿ Ã � ¶ ���`_ �� ¶ � � � Í Å � ¶ ���`_ � T x (9)

Implementation of the LO algorithm involves evaluation of (9)
for all possible ¶ ���`_ . To simplify the algorithm, the following
rules help to narrow down the number of possibilities to three. 1)
At each time instant, the change of the active set size can be at
most one. 2) An incoming candidate BS to the active set, á � � {=Ö ,
must have the strongest signal strength among the ones outside
the active set. 3) An outgoing BS, á � � â c�ã , must have the largest
probability to experience an outage event at time

�P�ä�
, i.e,á � � â c�ãå� arg Ïdæ�ç{�É Å 1 ~Y� � ���`_ � {hÊ�Ëè� Ú � � x (10)

Then the LO soft handoff algorithm is to minimize the incre-
mental cost (9) among the following three possibilities, i.e., 1)¶ ���`_ � ¶ � ; 2) ¶ ���`_ � ¶ ��é á � � {=Ö ; 3) ¶ ���`_ � ¶ ��ê á � � â c�ã .
It is seen that the major computation involved in the implementa-
tion of the proposed handoff algorithms is to solve the following
prediction problems.~ìë Ïdæ�ç{�É Å 1�ÓGJ � ���`_ � {`Ê�Ëí��Ú ��î�x



IV. JOINT MOBILITY TRACKING AND HARD HANDOFF

DETECTION

From the previous sections, it is seen that both mobility track-
ing and handoff detection are based on the received pilot signal
powers Ú � . Under the nonlinear state-space model given by (2)
and (3), the optimal estimates of the location and the velocity of
the mobile can be made. In addition, the optimal handoff algo-
rithms developed in Section III make use of the predicted signal
strengths in future time instants, which can be obtained from the
same state-space model. Therefore, it is natural to consider the
problem of joint mobility tracking and handoff detection. The
problem will be solved under a Bayesian framework. That is,
Bayesian inference of the mobile’s location and velocity will be
made from the on-line observation of the pilot signal strength-
s, and it will be further used to implement the optimal handoff
algorithms.

A. SMC Estimator for Mobility Tracking

Denote ï � � � \ �Hi e � � , ð � � � \ ��i�x�x�x�i \ � � , ñ � ��²eò� i�x�x�x!i eò� � and ó �ô� � ï � i�x�x�x ï � � . We are interested in
the on-line estimation of the posterior distribution � � ó � � Ú � � .
Based on the framework of sequential Monte Carlo (SMC) tech-
nique [3], we need a set of samples

¸�� ó«õ |�ö� i!÷ õ |�ö� �!¼�ø| Â`_ , properly
weighted w.r.t. the distribution � � ó � � Ú � � . The MMSE estima-
tor of the location and velocity can then be approximated byù � \ � ��Ú � � �� �ú � øÁ| Â`_ \ õ |�ö� ÷ õ |�ö� i

(11)

with
ú � j��û | ÷ õ |�ö� .

Following the framework of the sequential important sam-
pling method, first, we choose the trial distribution ü �!� � to beü � ï õ |�ö� ��ó õ |�ö�o^�_ i Ú � � � � � ï õ |�ö� ��ð õ |�ö�o^�_ i Ú �o^�_ �� � � \ õ |�ö� � \ õ |�ö��^`_ i e õ |�ö� � �&~ý�²e õ |�ö� � e õ |�ö��^`_ � i (12)

The important weight is updated according to÷ õ |�ö� � ÷ õ |�ö�o^�_ � � � ó õ |�ö� � Ú � �� � ó«õ |�ö��^`_ � Ú �o^�_ �Hü � ï � ��ó ��^`_ i Ú � �þ ÷ õ |�ö�o^�_ � � � � � � \ õ |�ö� � i (13)

More specifically, we have� � \ � � \ õ |�ö�o^�_ i e õ |�ö� ���³�� \ � � ] \ õ |�ö��^`_ �ÿaÇcØe õ |�ö� i�� wf adfåa qf � i (14)� � � � � \ õ |�ö� � ��³����ò� \ õ |�ö� � i!� wµ � � x (15)

We next summarize the SMC algorithm for mobility tracking as
follows. At the

�
-th recursion,

G1. For
� �m� i ����� i �

:� Drawn a sample
e õ |�ö� from

~��²e � � e õ |�ö��^`_ � given a priori;

� Drawn a sample
\ õ |�ö� from � � \ � � \ õ |�ö�o^�_ i e õ |�ö� � given by (14);� Form ó õ |�ö� � ¸ ó õ |�ö�o^�_ i ï õ |�ö� ¼ ;� Update the weight
÷ õ |�ö� � ÷ õ |�ö�o^�_ � � � � � � \ õ |�ö� � by (15);

G2. Implement the resampling procedure [5] if the effective

sampling size
�� � j� ø_���� <1�� � � ��´ , where � wã is the coefficient

of variation of the important weights.

B. SMC Predictors for Handoff Detection

For a general prediction problem, suppose we are interested in
computing the posterior distribution � � ó ���`_ � Ú � � . For the new
target distribution � � ó ���`_ � Ú � � , choose the new trial distribu-
tion �ü ��� � to be

�ü � �ó õ |�ö���`_ ��Ú � � j� ü � �ó õ |�ö� � Ú � � � � � �ó õ |�ö���`_ � �ó õ |�ö� i Ú � � (16)

where
¸�� �ó õ |�ö� i �÷ õ |�ö� � ¼�ø| Â`_ are sampled from the mobility tracker

and properly weighted w.r.t. the distribution � � ó � � Ú � � . Then,
the important weight is given by

�÷ õ |�ö���`_ j� � � �ó õ |�ö���`_ ��Ú � �
�ü � �ó õ |�ö���`_ ��Ú � � � �÷ õ |�ö� x

(17)

The trial distribution given in (16) implies the following steps

to obtain the samples
¸ �ó õ |�ö���`_ ¼�ø| Â`_ . At time

�
,

H1. Duplicate a set
¸�� ó õ |�ö� i�÷ õ |�ö� �!¼�ø| Â`_ , (obtained from the mo-

bility tracker [G1-G2]), to form the set
¸�� �ó õ |�ö� i �÷ õ |�ö� � ¼�ø| Â`_ ;

H2. For
� �m� i�x�x�xºi �

, do� Drawn a sample �e õ |�ö���`_ from
~ý� �e
���`_ � �e õ |�ö� � ;� Drawn a sample �\ õ |�ö���`_ from � � �\ ���`_ � �\ õ |�ö� i �e õ |�ö���`_ � ;

� Form �ó õ |�ö���`_ ��¸ �ó õ |�ö� i �ï õ |�ö���`_ ¼ ;
Based on (17), the samples

¸�� �ó õ |�ö���`_ i �÷ õ |�ö� � ¼�ø| Â`_ are properly
weighted with respect to the target distribution � � ó ���`_ � Ú � � .

Following the sampling procedure [H1-H2], we can obtain a

set of samples
¸�� �ó õ |�ö���`_ i �÷ õ |�ö� �!¼�ø| Â`_ , properly weighted with re-

spect to the distribution � � ó ���`_ � Ú � � . With these weighted
samples, the objective predictive probability (11) can then be ap-
proximated by~ ÜÞ È{�É Å 1�ÓKJ � ���`_ � { Ê 	 � Ú � ßà�� �	 ú � øÁ| Â`_ ���
{�É Å 1�ÓGJ
� Æ £ { � �\ õ |�ö���`_ � � 	� µ Ì (+ �÷ õ |�ö� x

(18)

Equation (18) follows from the observation model (3) and the as-
sumption that the shadowing is a Gaussian random variable un-
correlated in space.



V. SIMULATION RESULTS

To examine the performance of the proposed mobility track-
ing and handoff schemes, simulations are performed for the
conventional hexagon cellular network system. Simulation pa-
rameters are summarized in Table I. In order to cover the
range of dynamic acceleration

lÕ�k��´�� ��� w i ��´�� ��� w p , five levels��´ i����2i���� � � ��� w are selected as the states of the driving com-
mand. We consider a simulation environment where the mobile
trajectory is generated randomly and then fixed for the rest of the
simulation; the pilot signals are generated randomly for

¥�´
sim-

ulation realization.

TABLE I

SIMULATION PARAMETERS

Parameters Comments5?7 3 M�� � s Sampling interval@ 3 M�� � Correlation coefficient defined in (2)� >� 3 M�� �! Variance of Z � defined in (2)" 3 M�� # Transition probability $&% " %��' 3 � dB variance of the lognormal shadowing")( " % 3 #&M Base station transmission power* 3�+ Path-loss index, 3.- 4 dB Threshold of outage event

A. Results of Mobility Tracking

In Table II, the performance of the SMC mobility estimator
(11) is compared with that of the MEKF, with different number
of Monte Carlo samples employed by the SMC algorithm. The
performance is evaluated in terms of the normalized mean square
error (NMSE) of the mobile position. It is seen that with reason-
able number of samples (e.g.,

� �0/�¥�´
), the SMC estimator is

about
¥S�21

dB better than the MEKF estimator.

TABLE II

NMSE OF THE SMC AND THE MEKF TRACKERS.

SMC(dB) MEKF3 3 4 M&M  4�!M �!M&M 5&M&M (dB)-  4�)� M -6+  )� M -6+4+ � + -6+  )� � -  4�7� 8
B. Results of Soft Handoff

In this simulation, the following two soft handoff algorithms
are implemented.� The static threshold soft handoff strategy in [4] is implemented
with the add threshold chosen from

��¥
dB � ~

add � ¥
dB, the

relative drop threshold chosen from
�k��´

dB � ~
drop

�
~
add ��k�

dB, and a fixed timer set to be 9 µ ��¥ .� The locally optimal (LO) soft handoff strategy based on the
outage probability [cf. Section III-.1] is implemented with the
handoff cost chosen from Í ¿;: ¸ ´ x ´¡� i ´ x ´�< i ´ x ´�1 i ´ x �

,
´ x / ¼

and a fixed relative cost Í Å ��Í ¿ ��´ x ¥ .
The objective of the soft handoff is to best tradeoff among the
average size of active set

¾¡Å
, the number of active set updates½ ¾ ¿ , and the outage probability

¾
out. In Figure 1, the trade-off

among the three metrics
� ½ ¾ ¿ i ¾¡Å i ¾ out � are demonstrated for

both strategies for various threshold and cost parameters. It is
seen that comparing with the LO algorithm, the static threshold
handoff algorithm achieves the same system quality (in terms of

outage probability) at the penalty of a larger handoff rate and a
larger number of active set size. Furthermore, Bayesian cost giv-
en by (7) of different static handoff scheme are calculated and de-
picted in Figure 2. It is seen that the minimum cost is

� �¡x>=�? <�´
.

On the other hand, the LO soft handoff scheme is unique with
the selected parameters

¸ Í Å i Í ¿ ¼ , and has a Bayesian cost of��¥ x>? /�´�<
. Evidently, the LO algorithm incurs a smaller cost com-

pared with the static soft handoff algorithm, and therefore makes
a better trade-off between service quality and system resource u-
tilization.
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Fig. 1. A comparison of the tradeoff surface of the locally optimal soft handoff
algorithm and that of the static threshold soft handoff algorithm.
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handoff algorithms over different sets of thresholds, where E add denotes the
add threshold; E drop

- E add denotes the difference between the add threshold
and the drop threshold.

REFERENCES

[1] T. Liu, P. Bahl, and I. Chlamtac, “Mobility modeling, location tracking, and
trajectory prediction in wireless ATM networks,” IEEE J. Sel. Areas in Com-
mun., vol. 16, no. 6, pp. 922–936, Aug. 1998.

[2] R. Prakash and V. V. Veeravalli, “Locally optimal soft handoff algorithm,”
Proc. VTC 00, pp. 1450–1454, Fall, 2000.

[3] J. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,”
J. Amer. Stat. Assoc., vol. 93, pp. 1032–1044, 1998.

[4] TIA/EIA/IS-95, Mobile Station-Based Station Compatibility Standard for
Dual-Mode Wideband Spread Spectrum Cellular System. Telecommunica-
tion Industry Association, July, 1993.

[5] J. Liu and R. Chen, “Blind deconvolution via sequential imputations,”
J. Amer. Stat. Assoc., vol. 90, pp. 567–576, 1995.


