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ABSTRACT

This contribution aims at analyzing the performance of MMSE
equalizers for large linear precoded OFDM transmissions over
fading wireless channels with limited diversity and channel state
information available only at the receiver. Linear Precod-
ing consists in multiplying by a N � K isometric matrix a K-
dimensional vector obtained by serial to parallel conversion of a
symbol sequence to be transmitted . Based on the Free Probability
Theory, asymptotical analysis (N ��� ∞, K � ∞ and K � N � α �
1) of the SINR is conducted to understand the different parame-
ters involved in Linear Precoded OFDM schemes. The theoretical
results are confirmed by numerical simulations when considering
convolutional coding with finite memory.

1. INTRODUCTION
A multi-carrier OFDM system [1] using a Cyclic Prefix for pre-
venting inter-block interference is known to be equivalent to mul-
tiple flat fading parallel transmission channels in the frequency do-
main.
When perfect channel state information is available at the trans-
mitter, it is well known that the optimum (capacity-achieving)
transmitted spectrum may be computed by the well-known “water-
pouring” method: adapt the rate on each each subchannel by taking
into account the signal to noise ratio on that specific subchannel
When no channel knowledge at the transmitter is available, the
water pouring strategy is inappropriate and the transmitted infor-
mation on one subchannel can be irremediably lost if a deep fade
occurs. Different methods also known as diversity techniques have
been proved efficient to cope with these channel impairments. In
particular, [2] proposed a robust transmission scheme combining
the advantages of CDMA with the strength of OFDM known as
OFDM-CDMA, in which the information is precoded across all
the carriers by a pre-coding matrix. This combination increases
the overall frequency diversity of the modulator, so that unreliable
carriers can still be recovered by taking advantage of the subbands
enjoying a high Signal to Noise Ratio (SNR). Although originally
proposed for a multiuser access scheme, this concept is extended to
all single user OFDM systems and is referred in the sequel as Lin-
ear Precoded OFDM (LP OFDM) [3, 4]. [5] and [6] proposed to
optimize the coefficients of the matrix by deriving an upper bound
of the error of the maximum likelihood (ML) detector. More re-
cently, Giannakis [3] generalized these results to rectangular ma-
trices considering limited diversity channels. Even though optimal
maximum-likelihood (ML) detector clearly outperforms MMSE
receivers, the high computational cost of the ML detector prevents

its use in practical context. This paper will therefore only focus on
MMSE equalizers.

As in the context of multi-users systems, the performance of
such receivers can be characterized by their associated Signal to
Interference + Noise ratios (SINR), which, unfortunately have
a non interpretable analytical expression. In order to overcome
this difficulty, we propose to use an attractive approach already
used in the context of multi-users CDMA systems, where the pre-
coder is modeled as a certain type of random matrix. In [7], the
performance of the MMSE receiver considering ergodic channels
with i.i.d flat frequency fading and particular rectangular random
precoders has been studied. It was in particular shown that the
SINR converges almost surely toward a deterministic constant not
depending on the particular realization of the precoding matrix.
This contribution extends the analysis to limited diversity fad-
ing channels for which we derive the SINR based on asymptotical
analysis (K � ∞, N � ∞ and K � N � α � 1) and give tools for
understanding the parameters involved in LP-OFDM schemes (es-
pecially the nature and size of the LP matrix).

The system and channel model are described in section 2, fol-
lowed by an asymptotical analysis of the SINR of the MMSE re-
ceiver in section 3. Finally, section 4 is devoted to performance
results according to certain criteria. Some conclusions are drawn
in Section 5.

2. LP-OFDM TRANSCEIVER MODEL
In the following, upper (lower boldface) symbols will be used for
matrices (column vectors) whereas lower symbols will represent
scalar values, ��� 	 T will denote transpose operator, ��� 	�
 conjugation
and ��� 	 H �� ��� 	 T � 
 hermitian transpose.

Overall system model: since a N carrier OFDM system [1]
using a cyclic prefix is equivalent in the frequency domain to N
flat fading parallel transmission channels, the baseband discrete-
time block equivalent model of a LP-OFDM system can be de-
picted in figure 1. The N � 1 received vector at time n, r � n 	 ��
r1 � n 	���������� rN � n 	�� T can be expressed as a function of the emit-

ted symbol vector n, s � n 	 � �
s1 � n 	���������� sK � n 	�� T and of the addi-

tive noise w � n 	 � �
w1 � n 	���������� wN � n 	�� T vector using a block rep-

resentation: r � n 	 � HN � n 	 WKs � n 	�� w � n 	 . WK is a N � K LP
matrix whereas HN � n 	 � diag

�
h1 � n 	���������� hN � n 	�� is a diagonal ma-

trix of the frequency domain channel attenuations at block n. We
will also assume channel knowledge and perfect channel syn-
chronization at the receiver. Assuming that the system band-
width is much larger than the coherence bandwidth of the chan-
nel, the symbols are therefore transmitted over a static L-path
channel whose (time varying) impulse response is given at time



τ by h � τ � t 	 � 1
L ∑L � 1

l � 0 αl � τ 	 δ � t � dl � τ 	�	�	 and the � dl � τ 	�	 l � 1 � � � � � L
are the corresponding time delays. Here, the complex gains� αl � τ 	�	 l � 1 � � � �!� L are centered Gaussian random signals with unit
variance. Both the gains and time delays of the paths are as-
sumed static during the transmission of one K-dimensional code-
word (but can change from codeword to codeword). In this case,
the time dependence has no impact and will be omitted from now
on. The equivalent baseband channel transfer function is therefore
: h � f 	 � 1

L ∑L � 1
l � 0 α � lT 	 e � i2πl f T where T is the sampling rate and� 1

2T � f � 1
2T . The channel attenuation on carrier k is thus given

by: hk
� 1

L ∑L � 1
l � 0 αle

� i2πl k " 1
N (1 � k � N).

3. ASYMPTOTICAL ANALYSIS

In this section, we study the asymptotic behavior of the SINR when
the linear precoder matrix WK coincides with a realization of a cer-
tain kind of isometric random matrices. The output of the Wiener
filter is the vector y given by y � Gr, where the matrix G is defined
as

G � argminW #%$ WH r � s $ 2

� WH
K HH

N & HNWKWH
K HH

N � σ2IN ' � 1

The SINR βwi of the ith symbol is easily shown to express as βwi
�

ηwi
1 � ηwi

where

ηwi
� wH

i HH
N & HNWKWH

K HH
N � σ2IN ' � 1

HNwi (1)

wi is the ith column of matrix WK .
For a fixed K and N, it is extremely difficult to get insight on

the performance of the MMSE receiver from the expression (1). In
order to provide useful expressions, several papers [8, 9] have re-
cently analyzed, in the CDMA context, the behavior of the asymp-
totic SINR ( N � ∞, K � ∞ and K

N � α) when the entries of
WK are independent and identically distributed random variables.
However, in our case, since synchronization is ensured at the emit-
ter site, only isometric precoders can be considered. For calculus
purpose, the Linear Precoder is assumed to be an isometric ma-
trix extracted from a Haar distributed random unitary matrix : a
random unitary matrix is said Haar distributed if its probability
distribution is invariant by left multiplication by constant unitary
matrices. Such a matrix can be generated the following way: let
X � �

xi � j � 1 ( i � j ( N be a N � N random matrix with independent com-
plex Gaussian centered unit variance entries. Then the unitary ma-
trix X � XH X 	 � 1 ) 2 is Haar distributed (see [7, 10]). In the sequel, it
will be assumed that WK is generated by extracting any K columns
from a N � N Haar distributed unitary matrix independent of HN .
We stress on the fact that in practical precoded OFDM systems,
precoding matrices are not generated this way. Walsh-Hadamard
matrices, whose entries are binary, cannot in particular be consid-
ered as realizations of Haar distributed random unitary matrices.
However, simulations in the following section show that our theo-
retical evaluations fit very well with Walsh-Hadamard linear pre-
coded systems.

The following result holds.

Theorem 1 For all WK matrices chosen as above, when N � ∞
and K � N � α � 1, the SINR βwi at the output of the MMSE equal-
izer converges almost surely to a value β � α 	 that is the unique so-

lution of the equation* 1
2� 1
2 + h � f 	 + 2α + h � f 	 + 2 � σ2 � 1 � α 	 β � α 	,� σ2 d f � β � α 	

β � α 	,� 1
� (2)

The detailed proof uses rather involved materials based on the so-
called free probability theory (see [10]). For concision sake, only
an outline is provided. Here are the main steps:- Step 1: show that ηwi converges almost surely to a value

η � α 	 which does not depend on the choice of wi.- Step 2: for a given N, there are K quantities ηwi each
corresponding to the choice of a particular column code
in WK . Their sum over all the columns of this matrix is
trace  � AN � K � σ2IN 	 � 1AN � K � with AN � K � HNWKWH

K HH
N .

Hence, the limit value η � α 	 is given by :

η � α 	 � lim
N . ∞

1
αN

tr & � AN � K � σ2IN 	 � 1AN � K '
� 1

α
lim

N . ∞

1
N

N

∑
i � 1

λi

λi � σ2
� 1

α
lim

N . ∞

* λ
λ � σ2 dθN � λ 	

where � λi 	 i � 1 � � � � � N are the eigenvalues of AN � K and θN
is the probability measure on /10 defined by dθN � λ 	 �
1
N ∑N

i � 1 δ � λi � λ 	 . In the context of random matrices theory,
θN is called the empirical eigenvalue distribution of AN � K .- step 3: by applying free probability results, we can show
that θN converges almost surely to a compactly supported
measure θ, which can be derived explicitly. Therefore, η � α 	
converges almost surely to: 1

α 2 t
t 0 σ2 dθ � t 	 . This also shows

that βwi converges to a deterministic value η 3 α 4
1 � η 3 α 4 denoted

β � α 	 and solution of (2).

Interestingly, for a given channel, this result shows that the SINR
converges to a deterministic value (depending on the channel real-
ization) and that it is irrelevant to optimize the LP matrix.

4. PERFORMANCE RESULTS
This section analyzes the effect of the diversity order on the per-
formance of LP-OFDM schemes.
Diversity Considerations: it is extremely difficult to derive the
probability density function of β. Indeed, β is a random variable
linked to the number of paths of the time channel impulse response
by the non explicit equation (2). The evolution of the SINR with
respect to the number of independent taps is an interesting diver-
sity related topic and we illustrate numerically the effect of the
number of independent taps with α � 1. Figure 5 shows that by
increasing the channel order, the SINR converges to a determinis-
tic value thus converting the Rayleigh channel (L=1) into a gaus-
sian channel. Similar conclusions were drawn in [5] but the analy-
sis only focused on the ML detector behavior of multidimensional
QAM constellations systems. An interesting feature is that even
though the variance of the SINR distribution decreases, the mean
value also decreases. However, this phenomenon will have no im-
pact on the performance as highlighted in the next section
BER Considerations: this section aims at showing that our analy-
sis fits with usual precoding matrices. Figure 3 and 4 plot the the-
oretical and simulated (with Walsh Hadamard matrices) BER
respectively for α � 1

2 and α � 1 considering different channel or-
ders. By considering QPSK constellations, the asymptotic BER is

given by Q &65 β ' where Q � x 	 � 17
2π 2 ∞

x e � t2

2 dt. Since the SINR



is a random variable depending on the channel realization, we con-

sider the mean BER: # & Q & 5 β '8' . One can observe that the sim-

ulated and theoretical curves closely match for a realistic number
of carriers (N=128). As the channel order increases, the BER im-
proves considerably. As expected when α decreases, the perfor-
mance also increases for a given channel order. However, a loss in
terms of spectral efficiency incurs.
Spectral efficiency Considerations: the purpose of this section
is to design the LP matrix with respect to the ratio K � N � α
in order to maximize the spectral efficiency . This spectral effi-
ciency (in bits per symbol) corresponds to the maximal average
value of the mutual information between the transmitted and the
equalized received signal. Each carrier k is assumed to be encoded
independently according to fig.1. Indeed, the encoder cannot

Fig. 1. Classical frequency domain LP-OFDM transmitter
be applied prior to the carrier symbol allocation (as in COFDM)
due to the inter-carrier noise correlations introduced by the de-
spreading of the received symbols. For this reason, the same cod-
ing is applied on each of the carriers independently. The spec-
tral efficiency with MMSE equalization is defined as (see [11]:
γ � K � N 	 � 1

N ∑K
i � 1 log2 � 1 � βwi 	8� αlog2 � 1 � β � α 	�	 .

In this case, since the SINR is a random variable depending on
the channel realization, the spectral efficiency will be random as
well. In our simulations, only the mean spectral efficiency is con-
sidered. Figure 2 plots the optimum α of the spectral efficiency for
different channel orders. Nearly no redundancy (α 9 0 � 92) should
be spent on Linear Precoding whatever the diversity order L. In
other words, coding in the Galois field is spectrally more efficient
then redundant linear precoding. Based on this result and using
square matrices, notice that the filtering matrix has a very simple
implementation structure (scalar channel equalization followed by
a matrix multiplication):

G � WH
N diag : h ;1

+ h1 + 2 � σ2 ��������� h ;N
+ hN + 2 � σ2 <

Note also that the gain in spectral efficiency by optimizing α in-
creases with Eb � No as shown in fig.6 but little can be gained when
0 � 7 = α = 1 and Eb � No = 6dB
Convolutive Coding schemes: The performance of a system
where Linear Precoding of rate α is combined with classical Con-
volutional Coding of rate R is studied in order to confirm the spec-
tral efficiency analysis. In the context of coded LP-OFDM, one
Viterbi decoder is applied on each subband k and processes the
real and imaginary parts of the signal output of the Wiener filter.
In order to evaluate upper bounds on the BER, one usually first
evaluates the probability Pcoded LP-OFDM � d 	 of deciding P1 instead
of P0 where P0 is the path of the Viterbi algorithm trellis associated
to the transmitted sequence and P1 is a path which differs by d bits
from P0. Following [12, 4], the probability of that event, is given
by

Pcoded LP-OFDM � d 	 � # & Q & 5 dβ � α 	 '8'

The overall error probability is thus bounded by:

Pcoded LP-OFDM � ∞

∑
d � dmin

γd

M
Pcoded LP-OFDM � d 	 (3)

Here, dmin is the minimal distance of the code, M is the number
of input bits in the encoder and γd is the number of incorrectly
decoded information bits, for each possible incorrect path differing
from the correct one by d bits.

The goal is to determine the optimum balance between α and
R, assuming a constant overall spectral efficiency of 1 bit ( In the
case of QPSK constellations, we have 2 � αR � 1), The role of
α and R is revealed by eq.(3) and shows that the performance
is deeply related to the transfer function of the code. Indeed,
when α increases, β � α 	 decreases but R also decreases yielding
a greater minimum distance dmin through the transfer function.
Thus, the trade-off depends on the transfer function of the code
(through γd and dmin). The analytical expression of the transfer
function can only be drawn for codes with a limited number of
states. Since theoretical study of general codes is extremely dif-
ficult, we will conduct performance simulations of various con-
volutional codes. Fig.7 and Fig.8 plot respectively the perfor-
mance of various Convolutional Coding rate schemes � α � R 	 � � 1 � 1

2 	 ; � 8
10 � 10

16 	 ; � 3
4 � 2

3 	 ; � 2
3 � 3

4 	 � with diversity order 4 and 8. In
that purpose, the convolutional code specified in the HIPERLAN/2
standard is used. The mother code has a constraint length of 7
(133o, 171o) and rate 1

2 . The other rates are achieved by punctur-
ing the coded symbols. These figures suggest that the optimum α
is 1 and are in accordance with the spectral efficiency analysis of
fig.6 and fig.2

5. CONCLUSION
In this paper, we have provided a theoretical framework for the
design of LP-OFDM schemes with MMSE equalization under fi-
nite channel diversity constraint . We have modeled the precoding
matrix as an isometric matrix extracted from a Haar unitary ran-
dom matrix, and proved that the performance is independent of
the particular matrix realization. In this case, we have shown that
coding in the Galois field is spectrally more efficient then redun-
dant linear precoding. These theoretical results fit with realistic
parameters (N � 128, L � 8) and usual precoders such as Walsh-
Hadamard precoding matrices. These results were confirmed by
numerical simulations using convolutional codes.

6. ACKNOWLEDGMENTS

The authors would like to thank Patrick Maillé for useful discus-
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