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ABSTRACT 

 

In this paper, we present a new fast algorithm for two-
dimensional (2-D) linear adaptive filtering using the fast 
Chandrasekhar equations. Using the analogy between the 
multichannel linear model and the 2-D one, we transform an 
image into multichannel sequence and we extend the fast 
Chandrasekhar adaptive multichannel filtering algorithm to 
the 2-D case i.e. image filtering. The performance of the new 
2-D adaptive filter is tested by using this filter to estimate the 
coefficients of a 2-D Moving Average (2 -D MA) model of an 
unknown system. Furthermore, an application on adaptive 
noise cancellation of images is proposed throw a 2-D 
adaptive noise canceller based on the 2-D Chandrasekhar 
fast algorithm. Simulation results prove the superiority of the 
new 2-D Chandrasekhar filter comparing to similar 
approaches for image model identification. 
 

1.  INTRODUCTION 
 

In the framework of image filtering, several adaptive 
algorithms used for the recursive estimation of the 2-D model 
coefficients have been proposed in [3][9][10][11]. A 2-D 
Least Mean Square (2-D LMS) adaptive algorithm was 
proposed for the first time in [3] and applied to adaptive 
system identification and image enhancement. Furthermore, a 
2-D lattice LMS adaptive algorithm was proposed in [9]- [11]. 
This algorithm was used in image restoration applications 
and has given a successful results in terms of signal to noise 
ratio improvement. A significant amount of research has been 
reported on developing fast adaptive algorithm for the 2-D 
filtering. In [8], a 2-D Fast Recursive Least Square (2-D FRLS) 
transversal algorithm is proposed by Sequira et al. 
Furthermore, a 2-D Fast Lattice RLS (2-D FLRLS) adaptive 
algorithm is proposed in [4]. It updates the filter coefficients 
in growing-order form with a linear computational complexity 
and uses the geometrical approaches of vector space and 
orthogonal projection to solve the 2-D prediction problem. 
In the other hand, one of the approaches to decrease the 
computation cost of the adaptive filtering algorithms is the 
use of the Chandrasekhar factorization techniques. It is a fast 
alternative to the Kalman filter and can be efficiently applied 
if the state-space model is time-invariant [5][6]. The strength 
of this approach derives from the fact that it avoids the 
resolution of the standard Riccati equation. The derivation of 
fast adaptive algorithms based on Chandrasekhar fast 

equations using a state space model was presented in [1] and 
[2] for MA and ARMA linear filtering. It has been extended 
to the multichannel linear adaptive filtering in [6] and to the 
non linear filtering in [7]. 
In the present paper, we extend the use of the fast 
Chandrasekhar multichannel adaptive algorithm [6] to image 
filtering. By transforming a 2-D signal to a multichannel 
sequence, and transforming a 2-D MA linear filter model to a 
multichannel one, we derive a new fast adaptive algorithm 
based on the Chandraskhar equations for 2-D linear filtering. 
 

2. TRANSFORMATION OF THE 2-D MODEL TO A 

MULTICHANNEL MODEL 
 

In the case of a quarter-plane support of order (p,q), (Figure 
1), the output y of a 2-D MA (or Finite Impulsional Response 
FIR) stationary linear filter is given by the following 
relationship: 
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rny ,  represents the value of a pixel of the image y at line n 

and column  r, and jia ,  are the 2-D MA transversal filter 

coefficients. The sequences { }rnx ,  and { }rnv ,  are the 2-D 

random signal input and the additive noise, respectively. 
 

 
Figure 1: A Quarter-plane 2-D model 

 

Let consider y a square image of size (L×L). To transform the 
2-D signal { }rny ,  into a multichannel one of M channels, we 

propose to scan the rows of the 2 -D signal by a set M mono-
dimensional (1-D) sequences defined as follow: 
{ } [ ],,...,,...,.....,,,...,, ,11,12,21,2,12,11,1

)1(
LMLMLL yyyyyyyu +−+−=  

{ } [ ],,...,,...,.....,,,...,, ,21,22,31,3,22,21,2
)2(

LMLMLL yyyyyyyu +−+−=  

… 



{ } [ ],,...,,...,.....,,,...,, ,1,2,11,2,1,
)(

LLLMMLMMM
M yyyyyyyu ++= . 

Thus, each sequence u i( )  can denote the input signal of the 
ith channel of a multichannel linear FIR filter. 
Let now transform the 2-D linear filter given by equation (1) 
to the following multichannel filter [6]: 
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In this model, a linear scaning index k is introduced as 
k=r+L.(n-1). The total number of channels M is chosen equal 
to p. The index i is the channel order, u i( )  denotes the input 
signal of the ith channel, and Ni  is the dimension of the 
transversal channels chosen equal to q. The coefficient 

vector for the ith channel is given by [ ]
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A multichannel filter coefficient )(j
ib  have to estimate to the 

2-D MA filter coefficients jia , . 

An equivalent state-space model of the multichannel filter 
can be easily written as: [2][6] 
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Here, Z  is an extended data vector of dimension 
MnMmp −+= , where ( =n N N M1 + +... )  is the total 

number of coefficients and m is the index corresponding to 
the last input samples available, 
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and Θk  is a parameter vector of augmented dimension p:  
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where 0i is a zero vector of size i. The model (3) represents a 
time-invariant state-space system since the matrix D and the 
vector Z  are constant. 
 

3.  THE FAST CHANDRASEKHAR ALGORITHM  
 

Taking into account the state-space model (3), the estimate of 
the parameter vector Θk  may be performed by the standard 
Kalman filter which yields: 
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where the Kalman gain kK  and the innovations covariance 
Rk  are computed by : 
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The Riccati difference equation may be obtained from 
equation (8) by replacing the Kalman gain and the innovation 
covariance by their respective expressions (6) and (7). In 
[1][2] and [6], the Chandrasekhar factorization technique is 
applied to decrease the computational complexity of the 
Kalman filter. The term Pk k/ −1 is replaced by a factorized form 
of the covariance matrix increments 
δ P P Pk k k k k= −− − −/ /1 1 2 =(L M Lk k k

t
− − −1 1 1). 

Accordingly, a multichannel Chandrasekhar fast algorithm of 
reduced dimension were proposed in [6]. We give a summary 
of the steps of this algorithm in Table 1. The computational 
complexity of the reduced algorithm depends on α.n rather 
then n 2 . (α is the rank of the increment 0/11/22 PPP −=δ ). 

For more details about the derivation of the algorithm, the 
reader is referred to [6].   

Equation                                                                    Dimension 

Transform the 2-D signal rnx ,  into a multichannel one: 

{ } [ ],,...,,...,....,,..., ,11,11,2,11,1
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Estimated coefficient vectors : 
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Table 1: Steps of  the fast Chandrasekhar multichannel 
algorithm. 



The algorithm is initialized with the following relations: 
for i=1..M, K i

Ni1 10= +  and 2
1 vR σ= . 

0k
i  is an (i,k) matrix whose elements are zeros. The rank α, is 

equal to 2.M. 
By defining a pinning vector of length p: 
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σi
2  is the variance of the ith  channel coefficients. The initial 

values of the channel coefficient vectors are set to zero, 

namely, for  i=1..M,  
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4.  SIMULATION RESULTS 
 
 

Experiment 1: 2-D MA model identification 
 
 

The purpose of this example is to illustrate the performance 
of the proposed 2-D Chandrasekhar fast adaptive algorithm 
for a linear 2-D MA model identification following the block 
diagram of Figure 2. The desired 2-D MA filter output is : 
sn,r= -0.29 .xn-2,r-2+0.68.xn-2,r-1-0.37.xn-2,r 

       +0.69.xn-1,r-2 -1.68.xn-1,r-1+1.1.xn-1,r 

        -0.38.xn,r-2+1.12.xn,r-1+vn,r 
 

The sequences { }rnx ,  and { }rnv ,  are the 2-D random signal 

input and the additive gaussian noise of variance 2
vσ , 

respectively. 
The signal-to-noise ratio is defined as : 

2

2

log10(dB) SNR
v

s

σ
σ

=  where 2
sσ  is the variance of the 

desired filter output.  

 
Figure 2: Block diagram of the MA model adaptive 

identification 
 

We apply the new 2-D fast Chandrasekhar adaptive filter with 
3 channels to estimate the desired 2-D filter coefficients. 
The performance criterion chosen is the norm of the 
coefficient error vectors defined as: 
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coefficient of the desired filter of index j,i. 
For a desired image S of 20×20 pixels, Figure 3 illustrates the 
evolution of the coefficient error norm Er (dB) when the SNR 
is equal to 20 dB. We subplot in Figure 3 the coefficient error 
norms of the 2-D normalized LMS algorithm [3] and the 2-D 
FLRLS algorithm [4]. The coefficient error norm of the new 
Chandrasekhar algorithm is smaller than the one of both 
other algorithms. 

 
Figure 3: Norm of coefficient-error vector for the 2-D fast 

Chandrasekhar, 2-D LMS and 2-D FLRLS algorithms. 
 

Experiment 2: 2-D Adaptive noise cancellation 
The purpose of this experiment is to illustrate the 
performance of the proposed 2-D Chandrasekhar fast 
adaptive algorithm in additive noise cancellation using the 
block diagram of Widrow's adaptive noise canceller [12] 
(Figure 4).  
The relationship between the additive noise y and the 
reference noiss x is given by:  
yn,r= 0.1.xn-2,r-2+0.2.xn-2,r-1+0.5.xn-2,r+0.2.xn-1,r-2  

             –0.5.xn-1,r-1+0.4.xn-1,r -0.3.xn,r-2+0.2.xn,r-1 



 
Figure 4: Block diagram of the Widrow's adaptive noise 

canceller. 
 

The signal-to-noise ratio of the corrupted image is defined as: 

)var(
)var(

log10 y
vy+  and the SNR of the restored image is defined 

as 
)var(

)var(
log10 ve

e
−

, where var(x) notes the variance value of 

the signal x. 
Figure 5 shows the original image v of the bridge (256×256 
pixels) and the corrupted image with a gaussian white noise 
(SNR 4.2dB). The restored image using the 2-D normalized 
LMS filter has an SNR 9.3dB, while the restored image using 
the new 2-D Chandrasekhar filter provides a high SNR of 
20.9dB. The gain is about 16.7 dB, which proves the 
superiority of the proposed Chandrasekhar filter for image 
filtering. 

 

5. CONCLUDING REMARKS 
In this paper, we have presented a new fast algorithm for 
two-dimensional (2-D) linear adaptive filtering using the 
Chandrasekhar equations. This algorithm is based on the 
analogy between the multichannel linear model and the 2-D 
one. The new 2-D adaptive filter provides an satisfactory 
performance in 2-D MA Model identification and in 2-D 
adaptive noise cancellation. More works have to be done to 
generalize this algorithm to the case of 2-D Auto-regressive 
(AR) filtering and to use it for practical application such as 
texture characterization. 
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