
A HIGH-LEVEL DEVELOPMENT TOOL DEDICATED TO
THE GENERATION OF CORES FOR THE

IMPLEMENTATION OF IMAGE PROCESSING
APPLICATIONS.

Virginie Fresse1 Stephen Marshall 1 Olivier Déforges22

(1)
Dept. of Electronic and Electrical Engineering
University of Strathclyde, 204 George Street

Glasgow, G1 1XW United Kingdom.
Phone: +44/0 141 548 2250

E-mail: VirginieFresse@eee.strath.ac.uk
s.marshall@eee.strath.ac.uk

(2)
ARTIST/FRE URER laboratory

INSA RENNES
20 Avenue des Buttes des Coësmes, CS14315

35043 Rennes, France
Phone: +33/0 223 238 286

E-mail: odeforge@insa-rennes.fr

ABSTRACT
This paper demonstrates the integration of a high-level
development tool in a fast and easy-to-use prototyping
process, called AVSynDEx. This process is dedicated to
the implementation of real-time image processing
applications on parallel and mixed platforms. The
integration of this final environment, which is a high-
level development tool for the generation of IP cores,
completes the prototyping process. The designer of
image-processing algorithms can finally develop and
supervise the whole implementation process without
any pre-requirement and within a short development
time.

1- INTRODUCTION

AVSynDEx is an existing rapid prototyping process
aimed at the implementation of digital signal processing
applications on mixed architectures (multi-DSP+FPGA)
[1][2]. It is based on the use of available and efficient
CAD tools established along the design process so that
most of the implementation tasks become automated.
These tools and architectures are judiciously selected
and integrated during the implementation process to
assist a signal-processing specialist without relevant
hardware experience. The image-processing designer
can also develop and implement the algorithm within a
short development time and without requiring highly-
specialist hardware engineers. Nevertheless, this process
allows the image-processing designer to implement the
functions on FPGA on condition that the corresponding
core (hardware processing) already exists. The
generation of new cores is not possible and a hardware
engineer is then needed.
This paper completes the development of the previous
prototyping process, called AVSynDex [1], with the
integration of a high-level development tool, DK1
This work is granted by the Regional Council of Britanny

Design Suite [5], for the generation of IP cores. The
result leads to the final rapid prototyping process for the
development and implementation of any image-
processing applications on mixed architectures. The
development and implementation of a stack filter is used
to ill ustrate the benefits of such integration.

2- PROTOTYPING PROCESS

The methodology (figure 1) integrates two main CAD
tools: Advanced Visual System (AVS) for the
functional development of the application described as a
static data flow graph [3], and SynDEx as generator of
optimised distributed executive [4].

AVS

SynDEx

GODSP

Automatic translator

Sequential executive

Sequential executive/
distributed executive

DSP

Data flow graph

FPGA

C-
functions

C-
functions

cores

Figure 1: Rapid prototyping process for
implementation of image processing applications.

The image-processing designer creates the data flow
graph by means of the graphical development tool
called AVS. The processing operations are C-functions,
which are connected together by means of input and
output ports (data transfers between two functions). An
automatic translator and an academic tool called
SynDEx, ensure the translation towards hardware and
software descriptions, as explained in [1]. The target
platform is a mixed architecture made up of multi-
DSPC6x and a Virtex FPGA [2]. This architecture can
be modified without changing the prototyping process
and the available links.
Hardware and software processing is different for the
same functionali ty:
• A software processing operation is a C-function, fully

compatible to the initial processing operation. In this
case, the functional behaviour of the implemented
module is necessarily correct.

• A hardware processing is a core whose initial
description is made with Hardware Description
Languages (these languages being completely
different). The generation of cores is non-automatic
and cannot be achieved by the image-processing
designer. So, a specialized hardware engineer must
reproduce the overall functional behaviour of the C-
function to generate the corresponding IP core. The
functionali ty of the core may be incorrect if the HDL
description does not reproduce the same functionali ty.
This non-correspondence can only be detected during
the hardware implementation.

In this prototyping process, there is a perfect
correspondence between the C-function and the
software module. Unfortunately, the hardware module
does not possess any correspondence with initial
module. This lack of correspondence leads to the
possibili ty of a functionally incorrect hardware
implementation. The only way to check its functionali ty
is the implementation of the core. This constraint is
time-consuming and the partitioning between the
software and hardware part is diff icult to achieve.

The solution is the integration of a high-level
development tool called DK1 Design tool, which is a
solution for an easy generation of IP core.

3- INTEGRATION OF THE DK1 TOOL

3.1. Presentation of DK1 Design tool

Celoxica’s DK1 design suite is a high-level
environment, enabling the image-processing designer to
generate IP cores [5]. The description is made by means
of the Handel-C language. This language is grounded in
ISO-C but contains several extensions required for
hardware developments. Some expressions, statements,
types, type operators and objects are used in C-only or

Handel-C only. Generally, most of them are suitable for
both languages.
Different extensions are proposed by Handel-C; some of
them are listed below.
• Handel-C can process variables of arbitrary width.
This means that the size must be judiciously specified.
As the tool is dedicated to a hardware implementation, a
variable is a register whose size is the width of the data.
Operations on several variables are only possible for
identical widths (otherwise the concatenation operator is
required).
• An array of n variables corresponds to a set of n
registers. It is also possible to create memory arrays and
multi-dimensional memory arrays with wom (write only
memory), rom or ram keywords. The use of rom and
ram is restricted to one element access per clock cycle.
• In a way similar to C-language, a program is
executed sequentiall y. The additional par statement
allows parallel executions in a specific function. The
parallelism can be at instruction-level or bloc-level.
• For the communication, channels provide the links
between parallel branches. One parallel branch outputs
data onto the channel and the other branch reads data
from the channel. Channels also provide
synchronisation between parallel branches. As with the
variables, Handel-C provides flexible data path widths.

channels
processing

parallelism

Figure 2: Example of structure proposed by DK1
tool. Some parallel functions can be achieved; the
second line indicates a parallelism between 3 functions
(DK1 tool manages all synchronisations). Data is
transferred by means of channels

Parallel to this, the Handel-C language includes some
restrictions such as: the function may not be called
recursively; old-type function declarations and variable
length parameter lists are not possible. It is also not
possible to change a variable by casting or to use the
floating point.
An example of a Handel-C program containing par
statements and channels is given in figure 3.

Set clock=external "P1";

#define SIZE1 5 /*Width of data*/
#define WIDTH 256 /*Size of memory*/
#define LOG2_WIDTH 8 /*With of pointers*/

chan SIZE1 queue_in; /*Channels*/

void main(void)
{ ram unsigned SIZE1 Source[WIDTH*WIDTH];
 unsigned (LOG2_WIDTH*2) i,j;

par{
 { for(j=0;j<WIDTH;j++)

for(i=0;i<WIDTH;i++)
queue_in?Source[j*WIDTH+i];}

function1();
function2();

 }
}

Figure 3: Example of Handel-C program, 5bits-data
are read from channel “ queue_in” to load them in the
memory called “ Source” . Parallel to this, “ function1”
and “ function2” are executed (with the “ par”
statement).

3.2. Generation of cores with DK1 design tool.

DK1 Design tool has several modes. Some of them are
used for the generation of IP cores.
The generation of IP cores is shown in figure 4.
The initial AVS description is used to generate the
Handel-C program. According to the previous rules, the
designer turns the C-function into a Handel-C form.
These languages being similar and the translation being
at instruction level, the modifications are easy to
achieve.

C-function

Cores

Image designer

DK1 Design tool

Synthesis / place & route

C-function

Handel-C function

VHDL / EDIF

bitstream

Figure 4: Process of core generation with DK1 tool.

DK1 Design Suite has a debug mode to check the
functionality of the function (simulation for the program
with a specific image). This mode is only used to check
the resulting behaviour of the Handel-C function.

Then, the image-processing designer can specify two
modes:
• The first mode (VHDL) generates the

corresponding VHDL description. A synthesis tool
is then used to generate the EDIF description.

• The second mode (EDIF) generates the EDIF
description directly.

The structure of the Handel-C language always
guaranties to be synthesized (this is not the case for a
HDL description).
Finally, a place and route tool ensures the generation of
the IP core. All these tools are easy to use and the
image-processing designer does not need additional
hardware expertise.

4- GENERATION OF A NON-LINEAR CORE

The development of a non-linear filter illustrates the
benefits of such integration. The stack filter is a non-
linear filter, which has proved to give excellent results
in image restoration, noise reduction and optical
character recognition. This filter is well suited for a
hardware implementation but the complexity of such
implementation leads to few examples of this occurring
in practice.

4.1. Principle of the stack filter

All stack filters have two properties, a superposition
property know as threshold decomposition, and an
ordering property known as the stacking property [4].
The principle of the filter is given in figure 5.

Threshold 7

Threshold 6

Threshold 5

Threshold 4

Threshold 3

Threshold 2

Threshold 1

Threshold 0

5 1 0 3 6 5

PBF

PBF

PBF

PBF

PBF

PBF

PBF

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

3

0
1
1
1
1
1
1
1

0
0
1
1
1
1
1
1

Figure 5: Example of stack filter. The 3bits input
sample is threshold in 8 levels (=23). Then, a series of
PBFs computes the min value for each level. The result
is a stack of ‘1’ and ’0’ representing the output sample.

• The threshold decomposition is first achieved
for each pixel of the input window. The output of such
decomposition is a set of binary threshold signals, each
binary signal representing a level or threshold. So, for
m-bits samples, there are k=2m binary signals.

The k binary signals for an n-valued sample,
thresholdk(n), are defined according the following
equation

() ()
()

≥
<

=
knInput

knInput
nthreshold

k

:1

:0

• Then, a series of Positive Boolean Functions
are performed for every threshold. PBFs can only be
used because they maintain the stacking property and
hence validate the stack filter as explained in [6]. PBFs
can remain unchanged for each threshold but any
combination is allowed only if the output remains a
stack of ‘ 1’ with a stack of ‘ 0’ on top.

• The resulting binary signals represent the
output value, found by stacking the Boolean outputs
excluding Threshold 0.

4.2. Generation of the non-linear core.

The characteristics of the stack filter implemented are:
• Images are 256*256.
• Pixels are 8bit data (= 256 binary signals).
• The input window is 3*3 pixels.
• The PBFs are minimum operators
The only benefits are in the acceleration of the
development process and the execution times (the result
of processing on the images being identical to software
implementation).
The first stage is the description of the functional
algorithm by means of a C-function. This first function
is executed on a PC to check the functional behaviour of
the filter. The C-function is directly and easily
implemented in a C6x DSP. The image-processing
designer modifies the C-function to obtain a Handel-C
form. The functionali ty is checked with the DK1 tool.

4.3. Results

Table 1 shows the execution times according the target
component. The result of a DSP implementation is not
satisfactory: the stack filter contains several nested
loops containing conditioning, which do not suit the
VLIW architecture of the DSP.

 PC P III -
1GHz

DSP C6x
200 MHz

Virtex
XCV400E

Time 8s 18,45 s 2,282 ms
Table 1: Resulting execution times for a stack filter.

Timing characteristics for the FPGA are:
• Minimum period: 38.927ns (Max. freq.: 25.689MHz)
• Maximum net delay: 8.445ns
The result of the FPGA implementation is satisfactory:
the core can be used to implement real-time image
processing applications. The execution time (2.282 ms,)
allows the image-processing designer to implement the
algorithm within real-time constraints.

Flips-flops 177 (1%)
LUT 2 101

RAM (16*1) 160
SLICES 797 (16%)

Table 2: Resources for a stack filter.

In addition to a fast execution time, the resources are
relatively low as shown in the table 2. External memory
is used to load and save samples (17 ns per memory
access). The number of slices used is 797 (4800 are
available in the Virtex FPGA). Each Virtex CLB
contains four Logic cells organised in two similar slices.
Consequently, 16% of the FPGA is used for the stack
filter.
DK1 Design Suite ensures a fast generation of IP cores:

• The translation of a C-function into a Handel-C
form was performed in 30 minutes.

• The generation of core form the Handel-C
description was about 15 minutes.

5- CONCLUSION

Consequently, the DK1 Design Suite development tool
is an ideal solution for the fast and easy generation of IP
cores. An HDL description gives better results (in terms
of Quali ty of Results QoR, which is an area-
performance estimation) than a Handel-C description.
Nevertheless, the Handel-C language is easier to use
and the functionali ty is a direct translation from the C-
function. This leads to a close functional behaviour
between a C-function and the corresponding core. The
hardware and software modules are functionally similar.
Integrated in our prototyping process AVSynDEx, the
image-processing designer can develop the algorithm by
means of the AVS tool, and then generate the IP cores
with DK1 Design Suite. The implementation of the
application does not need highly specialist hardware
engineers; the image-processing designer manages all
the development stages.
The result is a rapid prototyping process for the
implementation of real-time image-processing
application. The development, the implementation and
modifications and optimisations are performed in less
than 1 day.

REFERENCES.
[1] Nezan J.F., Fresse V., Deforges O.: "Fast
prototyping of parallel architectures: an Mpeg-2 coding
application. CISST proc., Las Vegas, USA, June 2001.
[2] Fresse V., Deforges O., Assouil M. "Rapid
prototyping for mixed architectures". IEEE International
Conf. on Acoustics, Speech, and Signal Process., 5-9
June 2000, Istanbul, Turkey
[3] Grandpierre T., Lavarenne C., Sorel Y.: "Optimized
Rapid Prototyping for Real-time embedded
heterogeneous multiprocessors". 7th Int. Work. on
Hardware/software Co-design, May 1999 Rome, Italy.
[4] Advanced Visual Systems Inc. "Introduction to
AVS/Express". http//www.avs.com.
[5] Celoxica Inc.: "DK1 Design Suite". User manual.
[6] WendtP.D., Coyle E.J., and al. "stack filters". IEEE
Trans. on Acoustics, Speech and Signal Processing,
Vol.ASSP-34, no4, pp 898-911, August 1986.

