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ABSTRACT 

 
This paper presents a procedure to improve the quality of 
narrowband (0-4khz) CELP coded speech. The procedure is 
based to refine the pitch periodicity and reinsert the high 
frequency components (4-8khz) in the narrowband CELP 
decoded speech. The narrowband CELP decoded speech is first 
analyzed with Harmonic+Noise analyzer and Lowband 
information are extracted. By exploiting the Lowband spectrum 
envelope and V/UV information, the highband (4-8khz) 
spectrum envelope is recovered statistically by using a 
voiced/unvoiced   gaussian mixture model with interpolation. 
Lowband information along with the estimated highband 
information is then fed to the Harmonic+Noise synthesizer to re-
synthesize a wideband speech.  The objective and subjective 
tests are performed to evaluate the quality of the re-synthesis 
wideband (0-8khz) speech. The results of the above experiments 
show that the re-synthesis wideband speech is pleasant to listen 
with crispy characteristics and preferred over the CELP coded 
speech. 
 

1. INTRODUCTION 
 

The communication industry is using extensively CELP 
(Code Excited Linear Predictive) coders that can code or 
compress a speech signal up to 4.8kbs [1]. But beside its ability 
to operate at such a low bit rates, CELP coders present 
somewhat degraded quality of speech.  The two distinct artifacts 
present in CELP coded speech are known as hoarse and 
muffing characteristics. The muffing characteristics are due to 
the lack of the high frequency component in the narrowband 
speech signal. CELP coders were originally designed to operate 
with the existing telephone networks with the bandwidth limited 
from 0.3-3.4khz. Reinserting the high frequency component (4-
8khz) in CELP coded speech reduces the muffing characteristics. 
The re-generation of the high frequency component introduces 
natural characteristics in a narrowband speech signal. This also 
leads to better fricative differentiation and thus higher 
intelligibility.  The hoarse characteristics are inherent in CELP 
coders due to the stochastic excitation signal, which is selected 
from a codebook in which each codevector is generated from a 
Gaussian random numbers generator with unit variance. 
Refining the pitch periodicity of CELP coded speech reduces the 
hoarse characteristic. The CELP decoded speech is then re-
synthesized to refine the pitch periodicity with Harmonic+Noise 
coder, which is very well known to produce high quality of 
synthesis speech [2]. As CELP coders are being used widely in 

industry i.e. FS 1016 coder, QCELP coder of North American 
Cellular (CDMA) IS96. It is therefore required to further 
improve the quality of CELP coders.  
In section 2, an overview of the enhancement system is 
presented. Section 3, describes the lowband analysis of CELP 
decoded speech with Harmonic+Noise analysis. In Section 4, a 
strategy is discussed to estimate the wideband spectrum 
envelope and highband information by using a voiced/unvoiced 
gaussian mixture model. Section 5 describes the re-synthesis of 
wideband speech and section 6 presents the experiment details. 
Finally in section 7, conclusion is presented. 
 

2. ENHANCEMENT SYSTEM 
 
An enhancement system is designed to improve the quality of 
CELP coded speech as depicted in figure 1. The narrowband 
CELP decoded speech is first analyzed by a Harmonic+Noise 
analyzer and lowband information are extracted which includes 
fundamental frequency or pitch (ωο), gain, 10LSP (Line 
Spectrum Pairs) [3], harmonic magnitudes, phases and 
voiced/unvoiced information for each harmonic. The lowband 
spectrum envelope is then obtained from the 10LSP parameters 
and fed to a voiced or unvoiced gaussian mixture model to 
obtain a wideband spectrum envelope. Sampling the wideband 
spectrum envelope at pitch harmonics and normalizing the 
highband magnitudes, the highband information (harmonic 
magnitudes, V/UV) are obtained. Finally all the information 
from lowband and highband are fed to the Harmonic+Noise 
synthesizer, which re-synthesize a wideband speech signal (0-
8khz). 
 

3. LOWBAND HARMONIC ANALYSIS 
 
In Harmonic+Noise modeling, the speech signal is assumed to 
be composed of a deterministic component which is also known 
as quasi-periodic or voiced part of speech and stochastic 
component also known as non-periodic or unvoiced part of 
speech. The voiced part is modeled as sum of harmonics of the 
pitch or fundamental frequency (ωο) and is given mathematically 
in equation (1).  

 
Where al and φl are the amplitude and phases of the lth harmonic 
and L is the number of harmonics present in voiced speech. The 
unvoiced part is modeled as random noise. During the lowband 
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harmonic analysis, the lowband information are estimated which 
includes the fundamental frequency, gain, harmonic magnitudes, 
phases, frequencies, 10LSP parameters and voiced/unvoiced 
information for each harmonic. A slow varying short time 
spectrum envelope is obtained from the 10LSP parameters. 

 
4. HIGHBAND INFORMATION ESTIMATION 
 
The highband information is estimated from the highband 
spectrum envelope obtained from a voicing gaussian mixture 
model with interpolation. We designed two separate gaussian 
mixture model to represent the voiced and unvoiced distribution 
of speech spectrum envelopes. During the lowband harmonic 
analysis, 10LSP parameters are extracted. A lowband spectrum 
envelope is then obtained from the 10LSP parameters. The 
lowband spectral vector is then fed to the voicing gaussian 
mixture model and the MAP (Maximum A posterior 
Probabilities) for all the classes are obtained. The highband 
spectral vector is then recovered by interpolating between the 
three gaussian classes having the highest MAP. The predicted 
highband spectrum envelope is then used to estimate the 
highband harmonic magnitudes, and voiced/unvoiced 
information.  
 

4.1 GMM Model 
A finite mixture of Gaussian densities can be expressed 
mathematically as given in (2.1) and (2.2) 

Where q is the number of normal component densities in a 
gaussian mixture model and πj are the mixing proportions or 
component weights of each component density in a mixture 
model. The p(x,θj) is an individual component density in a 
mixture model and is completely defined by the parameter 
vector θj and is given in (2.3) 

Where πj, µj and Σj are the component weight, mean vector and 
covariance matrix of the jth component density of a Gaussian 
mixture model. The probability of an input vector x for the jth 
component density can be determined by the following equation 
(2.4) 

 
To use the above Gaussian mixture model, first we need to 
estimate its parameters. There is remarkable variety of 
estimation methods such as methods of moments, maximum 
likelihood, minimum chi-square, least squares and Bayesian 
approaches. We used the maximum likelihood method, which is 
the most popular method to estimate the finite mixture 
parameters. Maximum likelihood uses the well-known EM 
(Expectation and Maximization) algorithm iteratively to 
estimate the parameters. 

 
4.2 Training of GMM 

The mean vectors µµµµ, covariance matrices ΣΣΣΣ and component 
weights ππππ for each component density are estimated during the 
training of a Gaussian mixture model. A phonetically well-
balanced wideband (0-8khz) speech corpus, contributed by 
many male and female speakers was collected. 18LSP (Line 
Spectrum Pairs) parameters were extracted to get the parametric 
representation of the wideband speech corpus. 18LSP 
parameters then plotted to 128-point spectral vectors. The 
wideband spectral vectors were then classified into two groups 
containing voiced and unvoiced spectral vectors. To train a 
voiced GMM model with 128 normal component densities, we 
use LBG algorithm with split initialization to classify 128-
dimensional voiced spectral vectors into 128 clusters. Then 
sample mean vectors (128x1), covariance matrix (128x128) and 
component weights are obtained from each cluster. These 
parameter values are then used as initial values for EM 
algorithm.  The EM algorithm has two steps; the E-step or 
expectation step uses equation (3) to classify the input vectors.  

 
Where yi is the input vector and Ck is the kth component density. 
The M-step updates the parameters according to equations (4.1) 
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Figure 1. Enhancement System 
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and (4.2). Where Nk is the number of spectral vectors belong to 
cluster k and N is the total number of spectral vectors in training 
data. 

 
4.3 Recovering Highband Spectrum Envelope 

The GMM model is used as a tool of recovering statistically the 
highband spectrum envelope. Let x be the lowband spectral 
vector and y be the highband spectral vectors then the joint 
density of wideband vector z = (x, y) T is modeled as a mixture 
of q component of (2 x n)-variate Gaussian function [5]. 

Then the highband spectrum envelope is obtained by 
interpolating between the three component densities having the 
highest MAP for lowband vector x as given in (6)  

 
Where p(x) = p(θj | x) is the posterior probability of the input 
lowband vector x for the jth class. Finally equation (7) is used to 
obtain the interpolated version of the highband spectrum 
envelope. Where w is the number of the component densities 
used for interpolation and in this case it was set equal to three. 

After the estimation of the highband spectrum envelope the 
highband magnitudes at the pitch harmonics are estimated and 
the highband energies are normalized. The lowband and 
highband magnitudes along with voiced/unvoiced information 
are fed to the wideband synthesizer to re-synthesize an 
improved quality of wideband speech. 

The efficiency of our trained voiced and unvoiced Gaussian 
mixture model is also evaluated with different number of classes 
and covariance matrices, based on the diagonal covariance 
matrices for each class and a single global covariance matrix for 
all classes. We found that a single global covariance matrix gives 
better performance. Full covariance matrix for each class was not 
considered due to the higher memory and computation reasons. 
Voiced Gaussian mixture model was designed with 128 voiced 
classes while the unvoiced gaussian mixture model was designed 
with 64 unvoiced classes. 

The average spectral distortion in lowband and highband 
between the original wideband and predicted wideband spectrum 
envelope is calculated by using (8) and the results are given in 

table (1). The average spectral distortion in lowband is a bit 
higher for both models but it is reasonable in the higher bands. 
Increasing the number of classes in GMM model can reduce the 
average spectral distortion in the lowband but this will result in 
memory and computation overhead too.  The performance of the 
designed GMM models was also evaluated out of the training 
data and we found that the average distortions and outliers were 
slightly higher than that of over the original training data.   

 
5. WIDEBAND SPEECH SYNTHESIS 

 
Wideband speech is synthesized after recovering the highband 
information. The size of the synthesis window used was twice of 
that the analysis window. Suppose if the size of the analysis 
window was 30ms (240 samples at 8khz sampling frequency), 
then we used synthesize frame of size 30ms (480 samples at 
16khz sampling frequency). As in harmonic analysis each frame 
is classified into a number of voiced and unvoiced harmonics, so 
the harmonics declared as voiced during the analysis are 
generated from the sinusoidal oscillators with quadratic phase 
interpolation using measured phases. The highband harmonic 
phases are not considered. Frequency tracks between the 
adjacent frames are also determined to make the synthesis 
speech smooth and continuous. The unvoiced spectrum is 
obtained by filtering the Gaussian white noise with unit variance 
from the synthesis filter, whose coefficients are extracted from 
autocorrelation data, which is obtained from a weighted LPC 
spectrum. 
 

6. EXPERIMENT DETAILS 
First of all, a wideband speech corpus (0-8khz) sampled at 16khz 
with 16 bit/sample, mono and contributed by a large number of 
speakers was collected. The narrowband speech was obtained 
from the wideband speech corpus by filtering it with a linear 
phase FIR filter with cutoff frequency at 4khz and decimated by 
a factor of two. 18LSP parameters were extracted from the 
wideband speech and used for training a Gaussian mixture 
model. During the lowband harmonic analysis voiced/unvoiced, 
pitch, harmonic magnitudes, phases and spectrum envelopes 

SDAVERAGE dB Outlier > 3dB 

Lowband 
(0-4khz) 

4.52 -- 

Highband 
(4-8khz) 

1.89 7.23 

Voiced GMM 
128-Classes 

SDAVERAGE dB Outlier > 4dB 

Lowband 
(0-4khz) 

8.34 -- 

Highband 
(4-8khz) 

3.16 9.23 

Unvoiced GMM 
64-Classes 

Table 1. Performance Evaluation of GMM 

)1.5()()(
2

1
exp

)2(
)|(

1

1

2
1∑

=

−





 −∑−−
∑

=
q

j
jj

T
j

j
n

j
j zzzp µµ

π

π
θ

∑
=

≥=
q

j
jj

1

)2.5(0,1 ππ

)7()]|([
1

)|(
1

maxarg∑
=

=
w

i
ji xp

w
xyp

i
θ

)6(
)()(

2
1

exp
)2(

)()(
2
1

exp
)2(

)(

1

1
2/12/

1
2/12/

∑
=

−

−






 −∑−−
∑






 −∑−−
∑

= q

j
jj

T
j

j
n

j

jj
T

j

j
n

j

xx

xx

xp
µµ

π
π

µµ
π

π

( ) )8()(log10)(log10
11

2/1

1

2

2

2'

















−= ∑ ∫
=

−

N

n

nnave dHH
N

SD

π

π

ωωω
π



were extracted from the lowband speech. Narrowband spectrum 
envelope was then used to predict the highband spectrum 
envelope by a voicing Gaussian mixture model. Predicted 
highband spectrum envelope is then used to estimate highband 
harmonic magnitudes and the voiced/unvoiced information. To 
determine the capability of our enhancement system to estimate 
the highband speech, the experiment is first performed on the 
original lowband speech. Figure 3(a) shows a short time 
magnitude spectrum of original wideband and CELP coded 
narrowband speech. The figure 3(b) shows a short time 
magnitude spectrum of original and estimated wideband speech 
and it is clear that the recovered highband harmonic structure is 
very close to the original wideband speech.   
 

7. CONCLUSTION 
 
An enhancement system is proposed to improve the quality of 
narrowband CELP coded speech via lowband Harmonic+Noise 
analysis and wideband extension by using a voicing Gaussian 
Mixture Model. The quality of CELP coded speech after the 
harmonic analysis and wideband extension has been improved 
significantly. The wideband speech is pleasant to listen but it 
shows some hissing artifacts, the on going research is focused to 
reduce these artifacts, which encounters in higher frequency 
spectrum.   
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Figure 3(a). Short Time Magnitude Spectrum of CELP’s 
Coded and Original Wideband Speech 

Figure 3(b). Short Time Magnitude Spectrum of Original 
and Estimated Wideband Speech 

Figure (4). Spectrograms of Estimated Wideband, Original 
Narrowband and Original wideband Speech Signal. 

Figure 2. A Voiced Original and Estimated Wideband 
Spectral Envelopes 
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