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ABSTRACT
We consider optimal orthonormal filter banks for subband
coding of wide sense cyclostationary signals, with � -periodic
second order statistics. An � -channel over decimated uni-
form filter bank, with � -periodic analysis and synthesis fil-
ters, is used as the subband coder. An average variance con-
dition is used to measure the output distortion. We show that
for at least three potential bit allocation strategies, the opti-
mum filter bank is a principal component filter bank. This
is in the same vein as our earlier results on subband coding
with maximally decimated filter banks.

1. INTRODUCTION

Wide sense cyclostationary (WSCS) signals arise in many
applications, [1], [2]. We consider optimum orthonormal
subband coding of zero mean WSCS signals with � -periodic
second order statistics, i.e. signals that obey for all ����� :	�
 �� ��� ���� ������� 	�
 �� ������� ���� ��������� where

	�
 � � denotes
the expectation operator.

The subband coder itself is an � -channel over decimated
uniform filter bank (UFB), (see fig. 1), with!#" �$�
and � -periodic linear analysis and synthesis filters, %'&  ���)(*�
and +�&  ���)(,� , respectively. Each subband signal -.&  ��� , is
quantized at the � th instant, by a / &  ��� bit quantizer, 0 & .
Subject to bit rate and orthonormality constraints, we wish
to allocate bits /1&  �2� , and select, %3&  ���)(*� and +�&  �4�5(*� to
minimize the average variance of 6�7 ���78 �� ��� .

Among many possible bit rate constraints one can adopt,
three are of interest here. The first called static bit allocation
(SBA) involves constant /1&  ��� , and a bit rate constraint/9� :�;�<>=? &A@�B /C&ED�FG�IH (1.1)
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The second and third, both assume � -periodic bit allocation:/C&  �J�K�����L/C&  ���5H (1.2)

In the second, the average bit rate over all the channels is
constant at each time instant, i.e. given / and all � ,/9� : ;�<>=? &A@�B / &  ��� D FM�$H (1.3)

The third assumes a fixed average bit rate over periods of
length � : /9� N�O�QP <>=?R @�B ;�<>=? &A@�B / &  ���5H (1.4)

Among these, (1.2) requires the least computation and (1.4)
is the most general. On the other hand, (1.3) is preferred over
(1.4) in applications, such as control over networks, where
the bit rate constraint must be enforced at every time instant.

Subband coding under these three constraints, with max-
imally decimated filter banks (i.e. �S� !

) has been studied
in [6] and [7]. These references show that, while the op-
timum bit allocation schemes differ among (1.1 - 1.4), the
optimizing % &  ���)(*� and + &  ���)(*� can be chosen as the same
regardless of the allocation scheme. In fact a Principal Com-
ponent Filter Bank (PCFB), represents the common optimiz-
ing solution.

Recent studies, [4, 5] have established that the optimum
UFB subband coder for Wide Sense Stationary (WSS) sig-
nals is a PCFB, [3]. The principal contribution of this paper
is to show that even on the over decimated case, optimality
is attained through PCFB’s, despite the differing bit alloca-
tion constraints, reinforcing the universality of PCFB based
solutions for problems such as these.

2. OPTIMUM BIT ALLOCATION

For any zero mean signal
�7 ��� , define T�UV  ���W� 	�
 � U  ����� .

All subband signals - &  ��� have � -periodic second order statis-
tics. As in [4], [5], we assume that the quantizers are mod-
eled by additive zero mean noise sources, independent of the
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Fig. 1. An � -channel over decimated filter bank as subband
coder.- &  �2� , with variances of the formT U�!  ��� �#"%$ < U'&  )( R * T U+,  ���5� (2.5)

with " a distribution dependent constant. Note that under
(1.2), T�U�!  ��� are � -periodic.

Observe that the overall filter bank is
! � -periodic. Let-.  (*� and

-/  (*� be the transfer functions of
! � -fold blocked

versions of the analysis and synthesis banks respectively. In
particular,

-.  (,� is �O�10 ! � and
-/  (,� is

! �20��O� .
A key difference between the over decimated and the maxi-
mally decimated cases is that these transfer functions are no
longer square.

Define
� &  ����� �7 ! � 843 � , � &  ��� � �� ! ��843 � and the

WSS vectors,

-�� ��� � 
 � B  �����5�CHCHCH � � B  �65 8 � � N �)�1HCHCH�� �87 <>=  �����)�HCHCH�� � 7 <>=  ��� 8 � � N � �:9��
--  ����� 
 -GB  �����)�1HCHCH���-MB  �65Q8 � � N �5�CHCHCH � - ;�<>=  ���2�5�H1HCH���- ;�<>=  ��� 8 � � N � �:9�� (2.6)

with power spectral density (PSD) matrices ;=<V ?> � and ;@<+ ?> �
respectively. Observe,

--  ��� � -.  (*� -�  ���5H
We assume ;A<V ?> � is known. We assume the perfect recon-
struction and orthonormality conditions,
-.  (*� -.CB  (*� �ED � -/�B  (,� -/  (*�5� and

-/  (*��� -.CB  (*�5H (2.7)

We propose to minimize the average variance of 6F  �2���6�� ���78 �� �2� and under (1.3) and (2.7), obtainN�O� ; P <>=?R @�B T U G�  ��� � N��� P <>=?R @�B ;�<>=?
H @�B T U�!I  ���

� "��� P <>=?R @�B ;�<>=?
H @�B $ < U,& I ( R * T U+,I  �2�

J "%$ < U'&� P <>=?R @�B :�;�<>=K
H @�B T U+ I  ����D =ML5;

(2.8)

with equality holding iff for each 3���� �)�
$ < U,&  N( R * T U+'  �����O$ < U,& I ( R * T U+ I  ���5H (2.9)

Likewise under (1.4), the lower bounded becomes

"%$ < U,&� : P <>=KR @�B ;�<>=K
H @�B T U+ I  ��� D =PL); P � (2.10)

with the bound met iff for each 3���� �)� = �)� U
$

< U,&  ( R Q * T U+'  � = ���#$
< U'& I ( R R * T U+ I  � U �5H (2.11)

On the other hand under the static bit allocation strategy of
(1.1), as shown in [6], the lower bounded becomes

"%$ < U,&� ;�<>=K
H @�B : P <>=?R @�B T U+,I  �2� D � (2.12)

with the bound met iff for each 3����
$ < U,&  : P <>=?R @�B T U+'  ��� D �S$ < U,& I : P <>=?R @�B T U+ I  ��� D H (2.13)

Observe, the optimum bit allocation scheme (2.11) is the
most stringent among (2.9), (2.11) and (2.13).

Consequently UFB selection reduces to the following
problem:

Problem 2.1 Consider the �O�T0 ! � system
-.  (,� with

WSS input vector
-�7 ��� with given Hermitian PSD matrix

; <V U> � . Suppose
--  ��� in (2.6) is the output of

-.  (*� . For
(1.3) (resp. (1.4)), (resp. (1.1)) find

-.  (,� such that V = (resp.
V U ) (resp. V�W ) is minimized subject to (2.7).

V = � P <>=?R @�B  ;�<>=K
H @�B T U+ I  ��� � =PL);

(2.14)

V U � : P <>=KR @�B ;�<>=K
H @�B T U+ I  ��� D =PL); P (2.15)

V W � ;�<>=K
H @�B : P <>=?R @�B T U+ I  �2� D (2.16)

Observe all three of (2.14) - (2.16) are quite different
from one another. While V U is similar to the corresponding
cost function in the WSS case, [5], V = and VXW are more com-
plicated. Further while V U does not change by permuting the
subband variances, V = and VXW do. Indeed given a set of sub-
band variances at different time instants we need consider
only the arrangements that lead to the minimum value of V = ,
V W . Such optimal arrangements are characterized below.



Optimum Arrangement for V = : Among the various per-
mutations of T U+, �� � , ones that minimize V = obeys, [8]:

T U+��  � = � J T U+��  � U ��� ;�<>=K&	�@�
 T U+,  � = �� ;�<>=K&	�@�� T U+,  � U � (2.17)

For a $ -channel filter bank, � � $ , this requires that the
largest be paired with the smallest, the second largest with
the second smallest etc..

Optimum Arrangement for V W : Among the various per-
mutations of T�U+, �� � , ones that minimize V = obeys, [6]: for
each � , one partial sum equals the sum of the � largest among
the T�U+' �� � , another equals the sum of the next � largest, etc.

3. OPTIMUM SUBBAND CODER

We now characterize the optimum selection of
-.  (*� , by

introducing the notions of majorization and Schur concavity,
[8].
Definition 3.1 Consider two sequences

� ��� � &�� �&A@ = and� ��� � &�� �&A@ = with
� & J � &�� = and � & J � &�� = . Then we say

that � majorizes
�

, denoted as
��� � , if the following holds

with equality at � ���R? &A@ = � & �
R? &A@ = � & � N ��������H

Definition 3.2 Consider two sequences
� ��� � & � H&A@ = and� ��� � &�� H&A@ = with

� & J � &�� = and � & J � &�� = . Then we say
that � weakly supermajorizes

�
, denoted as

���! � , if
H? &A@ R � & J H? &A@ R � & � N � ����� H

We also have the following Fact from [8].

Fact 1 Consider any � ! 0'� !
Hermitian matrix

/
with

eigenvalues " = J " U J HCHCH J " P 7 , and an � ! 0 � !
matrix #L�%$ / $ B , with the � ! 0 � !

matrix $ obeying$&$ B � D . Then the diagonal elements #�&(' & of # obey

�)# &(' & � ; 7&A@ = �  �*" P 7 <>; 7 <>= �CHCH1H���" P 7 � H (3.18)

Further if
! � � ,

�+# &(' &�� 7&A@ = � �," = �CHCHCH���" P 7 � H (3.19)

Definition 3.3 A real valued function -  (*����-  ( = �CHCH1HG�)( � �
defined on a set .0/ / � is said to be Schur concave on . if��� � 1 �2. � -  � � J -  � �)H
- is strictly Schur concave on . if strict inequality -  � � "
-  � � holds when

�
is not a permutation of � .

Further we note the following result from [8].

Theorem 3.1 Let - be a real-valued strictly Schur concave
function defined and continuous on 3 as in Theorem 3.1.
Then �4�  � �5-  � � J -  � �5�
with equality holding only if

�
is a permutation of � .

We will now state a theorem that results in a test for strict
Schur concavity. We denote

- (
R
*  (*��� 6 -  (*�6 ( R �7- ( &(' 8 *  (*� � 6 U*-  (*�6 ( & 6 ( 8 �

and

V =  ������� � 6 V =6 T U+'I  ��� � and V =  �4� � �:9��;����� 6 U V =6 T U+'I  ��� 6 T U+ �  9 � H
Theorem 3.2 Let -  (*� be a scalar real valued function de-
fined and continuous on 3 �<�  ( = �CHCHCHM�)(+� �>=�( = J HCHCH J( �?� , and twice differentiable on the interior of 3 . Then -  (,�
is strictly Schur concave on 3 iff: (i) - (

R
*  (,� is increasing

in � , and (ii)

- (
R
*  (*����- ( R � = *  (,�@� - (

R
'
R
*  (,�78A- ( R ' R � = *  (*�8 - (

R
� = ' R *  (,�>�B- ( R � = ' R � = *  (*�DCFE H

If only (i) holds then -  (*� is only Schur concave.

It is known, that V U is strictly Schur concave, [8]. We
also have the following lemma.

Lemma 3.1 The real valued function V = as defined in (2.14)
is strictly Schur concave under (2.17).

Proof: Clearly V = is symmetric in its arguments T�U+ I  ��� ,
satisfying (i) of Theorem 3.2. Note that

V =  ��������� N� G+H ;�<>=&A@�B T�U+   ���JI =PL);T U+,I  �2� H (3.20)

If T�U+ I Q  � = � J T�U+ I Q  � = � , then under (2.17)

V =  � = � � = �D�EV =  � U ��� U �)�
satisfying condition (ii).

To establish (iii), note that

V =  ����� ���#V =  9��:���LK M
HANPO Q RQPS!T RU  (

R
*WV Q�X NT RU I (

R
*� M

H NYO Q RQYS T RU  ( 
 * V Q�X NT RU � ( 
 * � (3.21)



V =  ����� �:9��:��� �
������ �����

=1<>;; R M
HANPO Q RQPS T RU  (

R
* V Q�X N T RU I ( R * � R if � ��9������ � ,=; R M H NPO Q RQPS T RU  (

R
* V QJX NT RU I (

R
* T RU � (

R
* if � ��9������� � ,E if �����9������ � ,

and hence, under (3.21)

V =  ����� �5�4� � � 8 V =  �4� � �:9��;��� 8 V =  9 �:�7�)�������� V =  9 �:�7�:9 �:��� CFE H
Finally we note that under the pertinent optimum arrange-

ment, VXW is also Schur concave, but not in the strict sense.
This follows from a slight variation of the fact that V U is
strictly Schur convcave, see also [6]. Note that

;@<+ ?> ��� -. ?> �M;A<V ?> � -. B U> �5H (3.22)

Now suppose the � !
eigenvalues of ;=<V U> � , are

� -"2B ?> �)� -" = ?> �5�CHCH1H�� -" ; P <>= ?> � � �
with

-" & ?> � J -" &�� = ?> � " E at all
>

. Define the � ! 0 � !
matrix whose columns are the unit eigenvectors correspond-
ing to the smallest ��� eigenvalues of ;=<V ?> � . Observe

-� BC?> � -� U> ��� D�H
Then, because of Fact 1

� $	��T U+   ��� � P <>= ' ;�<>=R @�B)' &A@�B ��
 �	� U�B -"4& U> ��� > � 7 P <>=&A@ 7 P <>; P H
Note the number of diagonal elements of ; <+ ?> � is less than
the number of eigenvalues of ; <V U> � , as the overdecimated
condition forces

-.  (,� to be rectangular. Consequently, un-
like [6] and [7], where maximal decimation forced a square-.  (*� , weak super majorization, rather than majorization must
be used.

We then have the following result.

Theorem 3.3 Consider Problem 2.1 and all quantities de-
fined therein. Then optimality is attained if for a suitable fre-
quency inavriant permutation matrix � ,

-. ?> ����� -� B ?> � .
We note that for V U this solution is unique to within an

arbitrary permutation matrix � . For V = too this solution is
unique to any permutation matrix � that enforces an opti-
mum arrangement. This is so because both V = and V U are
strictly Schur concave. For V�W , on the other hand, even though� must enforce an optimum arrangement, the solution is
by no means unique, as V W is not strictly Schur concave.
Nonetheless it is intriguing that despite the difference be-
tween the V & , a common

-.
optimizes all three.

4. CONCLUSIONS

We have derived conditions for the optimal orthonormal sub-
band coding of � -WSCS signals, using an over decimated� -channel uniform filter bank as subband coder with � -
periodic filters three bit allocation schemes. As with the re-
sults of [6], [7] an optimum filter bank in each case is the
same PCFB.
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