SUBBAND CODING OF CYCLOSTATIONARY SIGNALS WITH OVERDECIMATED FILTER BANKS

Soura Dasgupta, Ashish Pandharipande
Department of Electrical \& Computer Engineering
The University of Iowa
Iowa City, IA-52242, USA.
Email: \{dasgupta, pashish\} @engineering.uiowa.edu

Abstract

We consider optimal orthonormal filter banks for subband coding of wide sense cyclostationary signals, with N-periodic second order statistics. An L-channel over decimated uniform filter bank, with N-periodic analysis and synthesis filters, is used as the subband coder. An average variance condition is used to measure the output distortion. We show that for at least three potential bit allocation strategies, the optimum filter bank is a principal component filter bank. This is in the same vein as our earlier results on subband coding with maximally decimated filter banks.

1. INTRODUCTION

Wide sense cyclostationary (WSCS) signals arise in many applications, [1], [2]. We consider optimum orthonormal subband coding of zero mean WSCS signals with N-periodic second order statistics, i.e. signals that obey for all k, l : $\mathcal{E}\left[x(k) x^{*}(l)\right]=\mathcal{E}\left[x(k+N) x^{*}(l+N)\right]$ where $\mathcal{E}[\cdot]$ denotes the expectation operator.

The subband coder itself is an L-channel over decimated uniform filter bank (UFB), (see fig. 1), with

$$
M>L
$$

and N-periodic linear analysis and synthesis filters, $H_{i}(k, z)$ and $F_{i}(k, z)$, respectively. Each subband signal $v_{i}(k)$, is quantized at the k th instant, by a $b_{i}(k)$ bit quantizer, Q_{i}. Subject to bit rate and orthonormality constraints, we wish to allocate bits $b_{i}(k)$, and select, $H_{i}(k, z)$ and $F_{i}(k, z)$ to minimize the average variance of $\hat{x}(k)-x(k)$.

Among many possible bit rate constraints one can adopt, three are of interest here. The first called static bit allocation (SBA) involves constant $b_{i}(k)$, and a bit rate constraint

$$
\begin{equation*}
b=\left(\sum_{i=0}^{L-1} b_{i}\right) / L \tag{1.1}
\end{equation*}
$$

Supported by ARO contract DAAD19-00-1-0534 and NSF grants ECS9970105 and CCR-9973133.

The second and third, both assume N-periodic bit allocation:

$$
\begin{equation*}
b_{i}(k+N)=b_{i}(k) \tag{1.2}
\end{equation*}
$$

In the second, the average bit rate over all the channels is constant at each time instant, i.e. given b and all k,

$$
\begin{equation*}
b=\left(\sum_{i=0}^{L-1} b_{i}(k)\right) / L \tag{1.3}
\end{equation*}
$$

The third assumes a fixed average bit rate over periods of length N :

$$
\begin{equation*}
b=\frac{1}{L N} \sum_{k=0}^{N-1} \sum_{i=0}^{L-1} b_{i}(k) \tag{1.4}
\end{equation*}
$$

Among these, (1.2) requires the least computation and (1.4) is the most general. On the other hand, (1.3) is preferred over (1.4) in applications, such as control over networks, where the bit rate constraint must be enforced at every time instant.

Subband coding under these three constraints, with maximally decimated filter banks (i.e. $L=M$) has been studied in [6] and [7]. These references show that, while the optimum bit allocation schemes differ among (1.1-1.4), the optimizing $H_{i}(k, z)$ and $F_{i}(k, z)$ can be chosen as the same regardless of the allocation scheme. In fact a Principal Component Filter Bank (PCFB), represents the common optimizing solution.

Recent studies, $[4,5]$ have established that the optimum UFB subband coder for Wide Sense Stationary (WSS) signals is a PCFB, [3]. The principal contribution of this paper is to show that even on the over decimated case, optimality is attained through PCFB's, despite the differing bit allocation constraints, reinforcing the universality of PCFB based solutions for problems such as these.

2. OPTIMUM BIT ALLOCATION

For any zero mean signal $x(k)$, define $\sigma_{x}^{2}(k)=\mathcal{E}\left[x^{2}(k)\right]$. All subband signals $v_{i}(k)$ have N-periodic second order statistics. As in [4], [5], we assume that the quantizers are modeled by additive zero mean noise sources, independent of the

Fig. 1. An L-channel over decimated filter bank as subband coder.
$v_{i}(k)$, with variances of the form

$$
\begin{equation*}
\sigma_{q_{i}}^{2}(k)=c 2^{-2 b_{i}(k)} \sigma_{v_{i}}^{2}(k), \tag{2.5}
\end{equation*}
$$

with c a distribution dependent constant. Note that under (1.2), $\sigma_{q_{i}}^{2}(k)$ are N-periodic.

Observe that the overall filter bank is $M N$-periodic. Let $\tilde{E}(z)$ and $\tilde{R}(z)$ be the transfer functions of $M N$-fold blocked versions of the analysis and synthesis banks respectively. In particular, $\tilde{E}(z)$ is $L N \times M N$ and $\tilde{R}(z)$ is $M N \times L N$. A key difference between the over decimated and the maximally decimated cases is that these transfer functions are no longer square.

Define $x_{i}(k)=x(M k-i), x_{i}(k)=x(M k-i)$ and the WSS vectors,

$$
\begin{gathered}
\tilde{x}(k)=\left[x_{0}(N k), \ldots, x_{0}(N K-N+1), \ldots, x_{M-1}(N k),\right. \\
\left.\ldots, x_{M-1}(N k-N+1)\right]^{T},
\end{gathered}
$$

$$
\begin{gather*}
\tilde{v}(k)=\left[v_{0}(N k), \ldots, v_{0}(N K-N+1), \ldots, v_{L-1}(N k),\right. \\
\left.\ldots, v_{L-1}(N k-N+1)\right]^{T} \tag{2.6}
\end{gather*}
$$

with power spectral density (PSD) matrices $S_{\tilde{x}}(\omega)$ and $S_{\tilde{v}}(\omega)$ respectively. Observe,

$$
\tilde{v}(k)=\tilde{E}(z) \tilde{x}(k)
$$

We assume $S_{\tilde{x}}(\omega)$ is known. We assume the perfect reconstruction and orthonormality conditions,

$$
\begin{equation*}
\tilde{E}(z) \tilde{E}^{\dagger}(z)=I=\tilde{R}^{\dagger}(z) \tilde{R}(z), \text { and } \tilde{R}(z)=\tilde{E}^{\dagger}(z) \tag{2.7}
\end{equation*}
$$

We propose to minimize the average variance of $\hat{q}(k)=$ $\hat{x}(k)-x(k)$ and under (1.3) and (2.7), obtain

$$
\begin{align*}
\frac{1}{L N} \sum_{k=0}^{L N-1} \sigma_{\hat{q}}^{2}(k) & =\frac{1}{L N} \sum_{k=0}^{N-1} \sum_{l=0}^{L-1} \sigma_{q_{l}}^{2}(k) \\
& =\frac{c}{L N} \sum_{k=0}^{N-1} \sum_{l=0}^{L-1} 2^{-2 b_{l}(k)} \sigma_{v_{l}}^{2}(k) \\
& \geq \frac{c 2^{-2 b}}{N} \sum_{k=0}^{N-1}\left(\prod_{l=0}^{L-1} \sigma_{v_{l}}^{2}(k)\right)^{1 / L} \tag{2.8}
\end{align*}
$$

with equality holding iff for each i, l, k

$$
\begin{equation*}
2^{-2 b_{i}(k)} \sigma_{v_{i}}^{2}(k)=2^{-2 b_{l}(k)} \sigma_{v_{l}}^{2}(k) \tag{2.9}
\end{equation*}
$$

Likewise under (1.4), the lower bounded becomes

$$
\begin{equation*}
\frac{c 2^{-2 b}}{N}\left(\prod_{k=0}^{N-1} \prod_{l=0}^{L-1} \sigma_{v_{l}}^{2}(k)\right)^{1 / L N} \tag{2.10}
\end{equation*}
$$

with the bound met iff for each i, l, k_{1}, k_{2}

$$
\begin{equation*}
2^{-2 b_{i}\left(k_{1}\right)} \sigma_{v_{i}}^{2}\left(k_{1}\right)=2^{-2 b_{l}\left(k_{2}\right)} \sigma_{v_{l}}^{2}\left(k_{2}\right) \tag{2.11}
\end{equation*}
$$

On the other hand under the static bit allocation strategy of (1.1), as shown in [6], the lower bounded becomes

$$
\begin{equation*}
\frac{c 2^{-2 b}}{N} \prod_{l=0}^{L-1}\left(\sum_{k=0}^{N-1} \sigma_{v_{l}}^{2}(k)\right) \tag{2.12}
\end{equation*}
$$

with the bound met iff for each i, l

$$
\begin{equation*}
2^{-2 b_{i}}\left(\sum_{k=0}^{N-1} \sigma_{v_{i}}^{2}(k)\right)=2^{-2 b_{l}}\left(\sum_{k=0}^{N-1} \sigma_{v_{l}}^{2}(k)\right) \tag{2.13}
\end{equation*}
$$

Observe, the optimum bit allocation scheme (2.11) is the most stringent among (2.9), (2.11) and (2.13).

Consequently UFB selection reduces to the following problem:
Problem 2.1 Consider the $L N \times M N$ system $\tilde{E}(z)$ with WSS input vector $\tilde{x}(k)$ with given Hermitian PSD matrix $S_{\tilde{x}}(\omega)$. Suppose $\tilde{v}(k)$ in (2.6) is the output of $\tilde{E}(z)$. For (1.3) (resp. (1.4)), (resp. (1.1)) find $\tilde{E}(z)$ such that J_{1} (resp. $\left.J_{2}\right)\left(\right.$ resp. $\left.J_{3}\right)$ is minimized subject to (2.7).

$$
\begin{gather*}
J_{1}=\sum_{k=0}^{N-1}\left(\prod_{l=0}^{L-1} \sigma_{v_{l}}^{2}(k)\right)^{1 / L} \tag{2.14}\\
J_{2}=\left(\prod_{k=0}^{N-1} \prod_{l=0}^{L-1} \sigma_{v_{l}}^{2}(k)\right)^{1 / L N} \tag{2.15}\\
J_{3}=\prod_{l=0}^{L-1}\left(\sum_{k=0}^{N-1} \sigma_{v_{l}}^{2}(k)\right) \tag{2.16}
\end{gather*}
$$

Observe all three of (2.14) - (2.16) are quite different from one another. While J_{2} is similar to the corresponding cost function in the WSS case, [5], J_{1} and J_{3} are more complicated. Further while J_{2} does not change by permuting the subband variances, J_{1} and J_{3} do. Indeed given a set of subband variances at different time instants we need consider only the arrangements that lead to the minimum value of J_{1}, J_{3}. Such optimal arrangements are characterized below.

Optimum Arrangement for J_{1} : Among the various permutations of $\sigma_{v_{i}}^{2}(j)$, ones that minimize J_{1} obeys, [8]:

$$
\begin{equation*}
\sigma_{v_{m}}^{2}\left(k_{1}\right) \geq \sigma_{v_{n}}^{2}\left(k_{2}\right) \Rightarrow \prod_{i \neq m}^{L-1} \sigma_{v_{i}}^{2}\left(k_{1}\right) \leq \prod_{i \neq n}^{L-1} \sigma_{v_{i}}^{2}\left(k_{2}\right) \tag{2.17}
\end{equation*}
$$

For a 2 -channel filter bank, $L=2$, this requires that the largest be paired with the smallest, the second largest with the second smallest etc..

Optimum Arrangement for J_{3} : Among the various permutations of $\sigma_{v_{i}}^{2}(j)$, ones that minimize J_{1} obeys, [6]: for each l, one partial sum equals the sum of the N largest among the $\sigma_{v_{i}}^{2}(j)$, another equals the sum of the next N largest, etc.

3. OPTIMUM SUBBAND CODER

We now characterize the optimum selection of $\tilde{E}(z)$, by introducing the notions of majorization and Schur concavity, [8].
Definition 3.1 Consider two sequences $x=\left\{x_{i}\right\}_{i=1}^{n}$ and $y=\left\{y_{i}\right\}_{i=1}^{n}$ with $x_{i} \geq x_{i+1}$ and $y_{i} \geq y_{i+1}$. Then we say that y majorizes x, denoted as $x \prec y$, if the following holds with equality at $k=n$

$$
\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}, \quad 1 \leq k \leq n
$$

Definition 3.2 Consider two sequences $x=\left\{x_{i}\right\}_{i=1}^{l}$ and $y=\left\{y_{i}\right\}_{i=1}^{l}$ with $x_{i} \geq x_{i+1}$ and $y_{i} \geq y_{i+1}$. Then we say that y weakly supermajorizes x, denoted as $x \prec^{w} y$, if

$$
\sum_{i=k}^{l} x_{i} \geq \sum_{i=k}^{l} y_{i}, \quad 1 \leq k \leq l
$$

We also have the following Fact from [8].
Fact 1 Consider any $N M \times N M$ Hermitian matrix R with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{N M}$, and an $L M \times L M$ matrix $A=\Psi R \Psi^{\dagger}$, with the $L M \times N M$ matrix Ψ obeying $\Psi \Psi^{\dagger}=I$. Then the diagonal elements $A_{i, i}$ of A obey

$$
\begin{equation*}
\left\{A_{i, i}\right\}_{i=1}^{L M} \prec^{w}\left\{\lambda_{N M-L M-1}, \ldots, \lambda_{N M}\right\} . \tag{3.18}
\end{equation*}
$$

Further if $M=N$,

$$
\begin{equation*}
\left\{A_{i, i}\right\}_{i=1}^{M} \prec\left\{\lambda_{1}, \ldots, \lambda_{N M}\right\} . \tag{3.19}
\end{equation*}
$$

Definition 3.3 A real valued function $\phi(z)=\phi\left(z_{1}, \ldots, z_{n}\right)$ defined on a set $\mathcal{A} \subset R^{n}$ is said to be Schur concave on \mathcal{A} if

$$
x \prec y \quad \text { on } \mathcal{A} \Rightarrow \phi(x) \geq \phi(y) .
$$

ϕ is strictly Schur concave on \mathcal{A} if strict inequality $\phi(x)>$ $\phi(y)$ holds when x is not a permutation of y.

Further we note the following result from [8].
Theorem 3.1 Let ϕ be a real-valued strictly Schur concave function defined and continuous on \mathcal{D} as in Theorem 3.1. Then

$$
x \prec^{w} y \Rightarrow \phi(x) \geq \phi(y)
$$

with equality holding only if x is a permutation of y.
We will now state a theorem that results in a test for strict Schur concavity. We denote

$$
\phi_{(k)}(z)=\frac{\partial \phi(z)}{\partial z_{k}}, \quad \phi_{(i, j)}(z)=\frac{\partial^{2} \phi(z)}{\partial z_{i} \partial z_{j}}
$$

and
$J_{1}(k, l)=\frac{\partial J_{1}}{\partial \sigma_{v_{l}}^{2}(k)}$, and $J_{1}(k, l, m, n)=\frac{\partial^{2} J_{1}}{\partial \sigma_{v_{l}}^{2}(k) \partial \sigma_{v_{n}}^{2}(m)}$.
Theorem 3.2 Let $\phi(z)$ be a scalar real valued function defined and continuous on $\mathcal{D}=\left\{\left(z_{1}, \ldots, z_{n}\right): z_{1} \geq \ldots \geq\right.$ $\left.z_{n}\right\}$, and twice differentiable on the interior of \mathcal{D}. Then $\phi(z)$ is strictly Schur concave on \mathcal{D} iff: $(i) \phi_{(k)}(z)$ is increasing in k, and (ii)

$$
\begin{aligned}
\phi_{(k)}(z)=\phi_{(k+1)}(z) & \Rightarrow \phi_{(k, k)}(z)-\phi_{(k, k+1)}(z) \\
& -\phi_{(k+1, k)}(z)+\phi_{(k+1, k+1)}(z)<0
\end{aligned}
$$

If only (i) holds then $\phi(z)$ is only Schur concave.
It is known, that J_{2} is strictly Schur concave, [8]. We also have the following lemma.

Lemma 3.1 The real valued function J_{1} as defined in (2.14) is strictly Schur concave under (2.17).

Proof: Clearly J_{1} is symmetric in its arguments $\sigma_{v_{l}}^{2}(k)$, satisfying (i) of Theorem 3.2. Note that

$$
\begin{equation*}
J_{1}(k, l)=\frac{1}{L} \frac{\left(\prod_{i=0}^{L-1} \sigma_{v_{i}}^{2}(k)\right)^{1 / L}}{\sigma_{v_{l}}^{2}(k)} \tag{3.20}
\end{equation*}
$$

If $\sigma_{v_{l_{1}}}^{2}\left(k_{1}\right) \geq \sigma_{v_{l_{1}}}^{2}\left(k_{1}\right)$, then under (2.17)

$$
J_{1}\left(k_{1}, l_{1}\right) \leq J_{1}\left(k_{2}, l_{2}\right)
$$

satisfying condition (ii).
To establish (iii), note that

$$
\begin{align*}
J_{1}(k, l)=J_{1}(m, n) \Leftrightarrow \quad & \frac{\left(\prod_{i=0}^{L-1} \sigma_{v_{i}}^{2}(k)\right)^{1 / L}}{\sigma_{v_{l}}^{2}(k)} \\
= & \frac{\left(\prod_{i=0}^{L-1} \sigma_{v_{i}}^{2}(m)\right)^{1 / L}}{\sigma_{v_{n}}^{2}(m)} \tag{3.21}
\end{align*}
$$

$J_{1}(k, l, m, n)= \begin{cases}\frac{1-L}{L^{2}} \frac{\left(\prod_{i=0}^{L-1} \sigma_{v_{i}}^{2}(k)\right)^{1 / L}}{\left(\sigma_{v_{l}}^{2}(k)\right)^{2}} & \text { if } k=m, l=n, \\ \frac{1}{L^{2}} \frac{\left(\prod_{i=0}^{L-1} \sigma_{v_{i}}(k)\right)^{1 / L}}{\sigma_{v_{l}}^{2}(k) \sigma_{v_{n}}^{2}(k)} & \text { if } k=m, l \neq n, \\ 0 & \text { if } k \neq m, l=n,\end{cases}$
We have derived conditions for the optimal orthonormal subband coding of N-WSCS signals, using an over decimated L-channel uniform filter bank as subband coder with N periodic filters three bit allocation schemes. As with the results of [6], [7] an optimum filter bank in each case is the same PCFB.

5. REFERENCES

[1] W. A. Gardner "Exploitation of spectral redundancy in cyclostationary signals", IEEE Signal Processing Magazine, pp 14-37, April 1991.
[2] G. Giannakis,"Cyclostationary Signal Analysis", Chapter 17, CRC DSP Handbook.
[3] M. K. Tstatsanis and G. B. Giannakis, "Principal component filter banks for optimum multiresolution analysis", IEEE Transactions on Signal Processing, pp 1766-1777 August 1995.
[4] M. K. Mihcak, P. Moulin, M. Anitescu, K. Ramchandran, "Rate-distortion-optimal subband coding without perfect-reconstruction constraints", IEEE Transactions on Signal Processing, pp 542-557, March 2001.
[5] P.P. Vaidyanathan, "Theory of optimal orthonormal subband coders", IEEE Transactions on Signal Processing, pp 1528-1543, June 1998.
[6] A. Pandharipande and S. Dasgupta, "Subband coding of cyclostationary signals with static bit allocation", IEEE Signal Processing Letters, pp 284-286, Nov 1999.
[7] A. Pandharipande and S. Dasgupta, "Subband coding of cyclostationary signals", Submitted to IEEE IEEE Transactions on Circuits and Systems.
[8] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its applications, Academic Press, 1979.

