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ABSTRACT 
 

Multiplierless filters are natural extensions of the low- 
sensitivity structures. Some low-sensitivity transformations 
are investigated for converting a prototype lowpass filter 
into a bandpass or a bandstop filter. The resulting 
coefficient values, due to such transformations, become 
quite low compared with conventional structures. When the 
coefficient values are expressed in minimum signed powers 
of two (MNSPT) forms or canonic signed digit (CSD) 
forms, they require few shifts and adds and/or subtracts for 
implementation and a multiplierless realization can be 
obtained. Further, when we allow some marginally 
insignificant deviation in the specifications including the 
tolerances and the bandedges, the number of shifts and adds 
and/or subtracts per multiplier becomes quite small making 
this approach quite attractive. Alternatively, we can design 
the overall filter with marginally stricter tolerances than the 
desired specifications and meet the criteria after quantizing 
the coefficients. 
 
1 INTRODUCTION 
 
Minimum number of signed powers of two (MNSPT) or 
canonic signed digits (CSD) representations of binary digits 
are extensively used for representing the multiplier 
coefficients in multiplierless implementation of a digital 
filter. An MNSPT representation of a coefficient value is 
given by ∑ −

i

t
i

ia ,2 where each ai is either 1 or –1 and ti is a 

positive or negative integer. For instance, 1.93359375 can 
be realized as 2−2−4−2−8. In this case, the multiplication is 
more efficiently and economically achieved with aid of 
three bit shifts and two subtracts, and not by a nine-bit 
multiplier. 

The structures such as a sum of allpass filters, including 
attractive lattice wave digital (LWD) filters, coupled with 
optimization methods have shown to yield good results for 
multiplierless implementation [10−13, 17, 18] in the case of 
IIR filters. These sums of allpass filters are characterized 
by the attractive property that there exist structures with the 
number of required multipliers being equal to the filter 

order, thereby decreasing the number of multipliers 
compared to conventional realization forms. 

A major approach for multiplierless implementation 
comprises of that of optimization [7−9, 17, 18], i.e., 
searching for the coefficients such that they can be 
implemented in MNSPT forms and the given criteria are 
still met. Optimization methods are used to find the optimal 
transfer functions under given constraints, filter design 
being basically a problem of approximation due to the 
tolerances in specifications. In general, the methods of 
optimizations are considered to be quite satisfactory. 
However, one may not assure or guarantee that the optimal 
solution will always be found under the given constraints. 
The solution can be unsatisfactory, for example, in terms of 
the filter order, the given wordlength of the multipliers, or 
the specified number of shifts and adds (in the case of 
multiplierless implementation), or some combination of 
them. Under such conditions, some parameters or 
characteristics of the filter will have to be relaxed to obtain 
an acceptable design and realization specific to the system 
it is intended to be used. 

Another interesting approach is the one that stems from 
design of an odd-order elliptic minimal Q-factor analog 
filter (EMQF) that has some special properties. Using the 
bilinear transformation these filters can be implemented as 
a sum of two allpass filters [10-13]. This method may also 
be associated with an expanded design parameters space 
like passband (stopband) tolerances, edges, and the filter 
order.  

Especially, in the case of FIR filters, another approach is 
based on combining simple sub-filters that can be 
implemented using only few shifts and adds and/or 
subtracts. Although quite attractive, to make this approach 
as a viable one, a large database of such filters will have to 
be generated and some optimization method will have to be 
evolved in order to combine some of them to meet the 
desired specifications. 

The feasibility of implementing multiplierless recursive 
digital filters based on coefficient translation methods in 
low-sensitivity structures has been demonstrated in [2, 3]. 
These low-sensitivity structures are based on replacing the 
unit delay element by a simple structure that is equivalent 



 

 

of shifting the origin of the z−plane [1, 4]. When 
implemented in MNSPT forms or CSD forms, the modified 
coefficients require few shifts and adds and/or subtracts for 
implementation. Allowing a marginally insignificant 
deviation in specifications a gross reduction in number of 
nonzero bits (effectively the number of shifts and adds 
and/or subtracts required) has been seen to be feasible. 

We observe that the low-sensitivity transformation 
substitution blocks in [5] is somewhat akin to that of 
coefficient translation methods in a sense that the shift of 
the origin is not in the z−plane but in the v−plane [1, 4, 5]. 
These transformations become potential candidates for 
investigating for generating multiplierless implementations, 
which is the main topic of this paper. 
 
2 THE STRUCTURES FOR IMPLEMENTATION 
 
One of the design and implementation methods for 
bandpass filters (BPF) or bandstop filters (BSF) comprises 
that of designing a prototype lowpass filter (LPF) first 
followed by an appropriate frequency transformation [6]. In 
order to gain the advantage of the reduced number of 
multipliers, and also to avoid delay-free loops due the 
transformed block, one would prefer using the following 
substitution [6]: 
 
           )1/()( 1121 −−−− −−−→ zzzz αα 1−= pv           (1) 
 
in the case of BPF’s with the passband bandwidth 

)( 12 ωω −  being equal to that of the prototype LPF, or 
 
            11121 )1/()( −−−−− =−−→ svzzzz αα             (2) 
 
in the case of BSF’s with )( 12 ωω −  (i.e., the region 
including the transition bands and the stopband of the BSF) 
equaling −2/π the bandwidth of the LPF. In both cases, α 
is given by 
 

=α cos[ 2/)( 12 ωω + ]/cos[ 2/)( 12 ωω − ]=cos 0ω , (3) 
 
where ,, 10 ωω  and 2ω  are the center frequency and the 
lower and upper passband edges, respectively. 

Replacing the unit delay elements of a LPF with the 
transform block, as given by Eq. (1) or (2), has the inherent 
advantage of reducing the number of multipliers. For 
example, consider the following second-order section of the 
prototype LPF with the transfer section  
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After using the substitution, as given by Eq. (1) or (2), and 
realizing the resulting BPF or BSF as a conventional 
cascade of two second-order sections, six multipliers are 

required. Alternatively, if each unit delay elements in Eq. 
(4) is replaced in the direct form II structure by using the 
transformation blocks given by Eq. (1) or (2), then we 
would need only five multipliers, as the transformation 
blocks can be implemented by one multiplier each. For the 
LPF with zeros not on unit circle, the transformed 
implementation requires six multipliers compared to eight 
multipliers required by the conventional cascade of two 
second-order sections. 

Generalizing the low-sensitivity transformations given 
in [5] we may write the low-sensitivity transformations for 
BPFs as 
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and for BSFs as 
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where k is a number that can be represented by one bit or at 
the most two bits in the MNSPT form. Its absolute value is 
either equal to or less than unity. For example, k may be 
equal to ±1, ±0.5, etc. For most cases, k = ±1 will suffice. 

It can be seen that for k = 1 or –1, the transformation 
given by Eq. (5) is equivalent to Structures B1 or B2 for 
BPFs considered in [5]. Similarly, the transformation given 
by (6) is equivalent to Structures B1 or B2 for BSFs in [5]. 
The generalized transformation substitution blocks are 
depicted in Figs. 1 and 2. 
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For k = 1, the modified coefficients for the fourth-order 
section resulting after transforming from the second-order 
section, as given by Eq. (4), are expressible as  
 
                 b1m=2+ b1;  a1m=2+ a1;  a2m=1+ a1+ a2 .       (7) 
 
In addition, two α−multipliers are needed for the two 
transformation blocks (those replacing the unit delay 
elements). 

Realization details and the scaling scheme for a fourth-
order section (obtained by applying the low-sensitivity 
transformation to a second-order section of the LPF 
prototype) are similar to those described in [5; see Fig. 4]. 
 
3 RESULTS AND DISCUSSIONS 
 
Quite a few filters were realized in the above manner as 
cascades of 4th-order sections. Tables 1 and 2 illustrate the 
results for the implementation for one bandpass filter and 
one bandstop filter. In both cases, a 12th-order elliptic filter 
was derived based on a 6th-order elliptic prototype LPF. 

The number of nonzero bits required by multiplierless 
implementations for the original design parameters as well 
as the resulting slightly increased passband ripples are 
shown in the tables. In addition, in both cases, a fresh filter 
was designed using the same method with marginally 
stricter passband and stopband specifications while keeping 
the filter order the same. The number of nonzero bits for 
achieving the original specifications (actually, a slightly 
smaller passband ripple is obtained) are shown in both 
cases in the tables.  

The dashed and solid lines on Fig. 3 show the amplitude 
responses for the infinite-precision BPF filter with stricter 
criteria and for the filter with forty-eight nonzero bits (that 
is, 3.2 nonzero bits per multiplier on the average).  

It is interesting to observe from Fig. 3 that the stopband 
behaviors of the infinite-precision and finite-precision 
filters are practically the same. This is mainly due to the 
fact that we are using a cascade-form realization. For this 
realization, the effect of coefficient quantization is very 
small for the zero locations of the overall filter. This is also 
true for the filters of Tables 1 and 2.  

From the above results it is seen that by starting with a 
filter with revised specification it is possible to implement 
the multipliers with 3.2 and 3.07 nonzero bits on the 
average per multiplier for both the BPF and the BSF. 
Further, it was also seen that by allowing marginal 
deviations in the bandedges (by reducing the number of 
nonzero bits for α −multipliers only), an additional 
reduction in the number of nonzero bits can be achieved. 
For example, in the case of the BPF, 42 nonzero bits (a 
reduction of one bit each of the six α −multipliers) leads to 
the filter with the passband edges being located at 0.1987π  
and at 0.299π. The corresponding stopband edges are 
located at 0.1815π and 0.3231π. Similarly, the use of 40 
nonzero bits for the multipliers for the BSF leads to a filter 
with the passband and the stopband edges being located at  

 

Table 1. Requirement of nonzero bits for 
the example bandpass filter.  

  
Bandpass filter (12th-order) 
passband edges: 0.2π, 0.3π 

 stopband edges: 0.18π, 0.33π 
passband ripple: 0.1 dB; stopband  attenuation: 50 dB 

 
Number of nonzero bits 

for 15 multipliers 
Passband tolerances obtained 

 
 

(a) 77 
 

(b) 71 
 

(c) 63 
 

(d) 56 
 

(e) 48 
 

 
 
 

 

 
0.104 dB designed with initial        

specification 
0.121 dB    ……”………         
 
0.1275 dB …..”…….. 
 
0.1775 dB ……”……. 
 
0.081  dB designed with revised 

specification of passband 
ripple of 0.05 dB and 
stopband attenuation of 51 
dB. 

 
 
Note: Cascade realization of unmodified 4th-order sections 

needs 20-bit multipliers 
 
 
 
 

Table 2. Requirement of nonzero bits for 
the example bandstop filter.  

 
Bandstop filter (12th-order) 
passband edges: 0.2π, 0.35π 

 stopband edges: 0.22π, 0.32π 
passband ripple: 0.1 dB; stopband  attenuation: 50 dB 

 
Number  of nonzero bits 

for 15 multipliers 
Passband tolerances obtained 

 
 

(a) 76 
 

(b) 67 
 

(c) 62 
 

(d) 59 
 

(e) 56 
 

(e) 46 
 

 
 
 

 

 
0.1009 dB designed with initial        

specification 
0.1045 dB    ……”………         
 
0.1068 dB …..”…….. 
 
0.1195 dB ……”……. 
 
0.18    dB      …..”…… 
 
0.095 dB designed with revised 

specification of passband 
ripple of 0.05 dB and 
stopband attenuation of 51 
dB. 

 
 

Note: Cascade realization of unmodified 4th-order sections 
needs 22-bit multipliers 

 
 
 
0.205π and 0.3545π, and at 0.2227π  and 
0.3293π, respectively. 
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Fig. 3. Amplitude responses for the infinite-precision BPF 
filter with stricter criteria (dashed line) and for the filter 
with forty-eight nonzero bits (solid line). 
 
4 CONCLUSIONS 
 
We have shown that the multiplierless implementation of 
BPFs and BSFs utilizing low-sensitivity transformation 
structures is a feasible and attractive proposition. Further, 
considering the acceptance of a marginally small deviation 
in the passband and stopband tolerance specifications 
compared to the initial infinite-precision design, the method 
becomes quite attractive for implementing IIR BPFs and 
BSFs in the multiplierless manner. Our analysis indicates 
that utilizing the approach outlined multiplierless 
realizations can be achieved by using less than four nonzero 
bits per multiplier on the average without any increase in 
the filter order. Future work is devoted to applying 
optimization techniques to further reducing the number of 
nonzero bits. 
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