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ABSTRACT

In multistandard radio receivers, the hardware should be
configurable or programmable for the reception of different
types of signals having different symbol rates. The
decimation by a non-integer factor becomes a critical
functionality of the multistandard radio. The Cascaded
Integrator-Comb (CIC) filters are commonly used for
decimation by an integer. By using polynomial
interpolation filter between integrator and comb stages of
CIC, and non-integer delay in the feed-forward branch of
the comb stage, we achieve improved attenuation for the
aliasing frequency components, and we make possible to
use this type of structure for decimation by a non-integer
factor. We name this structure as a programmable fractional
CIC filter structure. This paper presents an efficient
fractional structure for flexible decimation in the
multistandard radio receivers. This structure is based on the
so-called modified comb filter using the programmable
fractional CIC principle. The main advantages of the
proposed structure are flexibility and programmability with
increased attenuation for aliasing frequency components. 

1. INTRODUCTION

In multistandard receivers the hardware should be
configurable or programmable for the reception of different
types of signals having different symbol rates. After the AD
conversion, utilizing commonly the delta-sigma AD-
conversion principle and high oversampling ratio, the
sampling rate is reduced to be an integer multiple of the
symbol rate. The problem is in that the needed decimation
factor can be a difficult fractional number, or even an
irrational number. The frequency bands, which cause
aliasing in decimation, should have good attenuation. Since
the basic idea of the software radio is to support different
system standards by common hardware platform, it is
desired to have programmable decimator structure.
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Furthermore, the overall implementation should be simple
in order to have economic implementation and low power
consumption, because the decimation filter is used in the
digital front-end of mobile receivers where the sampling
rate is high [1].

Cascaded integrator-comb (CIC) filters are commonly
used for decimation by an integer factor providing efficient
anti-imaging and anti-alas filtering [2]-[5]. The CIC filter
has a simple, regular structure without multipliers.
However, when the decimation factor is a non-integer
number, the CIC filter cannot be directly used. One solution
is to use CIC filters in a combination with an interpolation
filter [3], [4]. The role of the interpolation filter is to
perform fine tuning of sampling rate and to provide better
attenuation for aliasing bands. The decimator structure
presented in [4] consists of CIC filter having an
interpolation filter between integrator and comb stages. We
named this structure as a programmable fractional CIC
filter. As it has been shown, it is possible to adjust the
position of zeros in frequency response and attenuation of
aliasing bands of the overall structure.

The role of this paper is twofold. First, we give
generalized overview of the programmable fractional CIC
filter with non-integer delay in the comb stage, and
interpolation filter between integrator and comb stages.
After that, we present an efficient decimator structure that
is based on the mentioned method implemented within a
modified comb filter structure. The modified comb filter
has been presented by Saramäki and Ritoniemi in [6]. The
CIC filters are useful for a narrowband desired signal,
where the nulls of the filter are wide enough to protect the
desired passband from aliasing distortion. The modified
comb filter structure has wider nulls, thus they are useful
for wider desired signal passband. Though the several
multipliers may be required in the realization of the
modified comb filter, the computational complexity is not
increased. Under certain conditions those multiplications
are realized as shift operations.

2. PROGRAMMABLE FRACTIONAL CIC FILTER

The CIC filters are commonly used for decimation and
interpolation by an integer ratio providing efficient anti-
imaging and anti-alias filtering [2]. The CIC architecture
has main advantage in its simplicity, as CIC filter does not
require any multiplier. The Nth order CIC decimation filter
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Fig. 1.(a) Integrator filter. (b) Comb filter.

consists of N cascaded digital integrator stages operating at
high input rate Fin, followed by N cascaded comb or
differentiator stages operating at low output sampling rate
Fout, see Fig. 1.The frequency response of the Nth order CIC
filter of length K is given by
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The programmable fractional CIC filter, shown in Fig. 2,
consists of N integrator stages operating at input rate Fin,
polynomial interpolation filter ha(t) (PIF in Fig. 2),
resampler and N comb stages operating at output sampling
rate Fout. The role of polynomial interpolation filter is to
provide the corresponding sample to the input of the comb
stage. The interpolation filter provides also better
attenuation of aliasing bands. It should be noted that the
interpolation filter does not work all the time, as it prepares
the samples for the output stages that work at the output
sampling rate. The control logic of the interpolation filter is
very similar to the one presented in [3]. In this way the
workload is reduced as the interpolation filter in practical
realization work at the output sampling rate. In the case of
non-integer decimation factor R=Fin/Fout, we can realize the
frequency response (1) by placing a non-integer delay D in
the feed-forward branches of the comb stages. D is
determined by desired length of moving average (CIC)
filter K and overall decimation ratio R as D=K/R. The
moving average filter length K has influence on the
frequency response of the overall structure. The value of K
determines the positions of the zeros in the overall
frequency response. The frequency response of the overall
system is a product of two frequency responses of the
systems in cascade, that is
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where Ha(jf) is the frequency response of the interpolation
filter. The attenuation of the aliasing bands can be
improved and programmed either by increasing the order of
the CIC filter N, or by adjusting the parameter K, that is D
in actual implementation.

2.1. The time domain conditions

We assume that the CIC filter uses the special modulo
arithmetic, in which case it does not have stability or
overflow problems. The CIC filter operates correctly only if
it is implemented using a ‘wrap around’ number system,
like the two’s complement number system. With this kind
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Fig. 2. The programmable fractional CIC filter.

of number system, overflow is modulo operation, i.e., what
is actually stored in the register is the residue of the true
value, see [5]. Therefore, all components of the proposed
structure must support this type of number system. In the
programmable fractional CIC filter, the critical issue is the
polynomial interpolation filter because it does not give the
correct sample value in case of overflow. The problem is
avoided by using an interpolation method that is based on
finite differences. For example, in the case of linear
interpolation instead of using

[ ] ,)()1()()( llll nxnxnxly µ−++= (3)

the following expression is used

,)()( lllnxly µ∆+= (4)

where x(nl) and x(nl+1) are the two adjacent input samples,
∆l is the first finite difference, y(l) is the resulting output
sample, and all operations are modulo operations. If two’s
complement overflows occur in an integrator, the large
difference in absolute value is of no consequence, using
modulo arithmetic is still correct value. The necessary and
sufficient condition for the filter to work for any input is
that the number range must be the same within each stage
of the structure.

3. MODIFIED CIC FILTER

The advantage of the proposed decimator structure is in that
the integrator part does not require any multipliers thus it is
computationally efficient first stage solution in VLSI
multistage decimators. However, the main drawback of the
CIC structure is in that the filter order N increases fast when
required stopband attenuation for the overall decimator is
increased. This problem can be overcome by the structure
presented by Saramäki and Ritoniemi in [6], so-called the
modified comb filter structure. In this structure the CIC
filter order N is decreased by using a few additional
interconnections. Combining the modified CIC filter idea
and the programmable fractional CIC decimation idea we
have obtained the efficient proposed decimator structure of
Fig. 3. The optimization procedure that has been derived in
[6] can also be applied to this case.

The proposed decimator structure can be further
simplified by quantizing the coefficients ar to be integers
possibly powers of two. When ar is a power of two, then
shifters are used instead of multipliers. Even though
overflows occur in the feedback loops of these structures,
the output is correct provided that modulo arithmetic is
used. The transfer function of an integrator shown in Fig.
3(b) is
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Fig. 3. (a) Modified CIC with non-integer delay.
(b) Integrator filter with transfer function A(z). (c)
Comb filter with transfer function B(z).

,
1

)(
1

1

−
= −

−

z

z
zA (5)

whereas the transfer function of a comb filter from Fig. 3(c)
is given as

1)( −= −DzzB . (6)

However, the non-integer delay filter is not ideal and we
have to take into consideration the actual approximation.
Various methods for designing fractional delay filter are
presented in [7]. As the non-integer delay approximation
we use the FIR fractional delay filter designed using the
Lagrange interpolation method [7], [8]. In this method the
delay z-D is approximated by
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where L is the FIR filter length, and filter coefficients hD(n)
have the explicit form as
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The transfer function of the comb stage can be expressed as
the transfer function of an FIR filter as follows
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The transfer function of the overall structure that takes into
account the FIR fractional delay filter is given as
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with
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We start the derivation of the frequency response of the
overall decimator structure by expressing the frequency
responses of the building blocks as
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Frequency response of the overall structure is given by
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4. DESIGN EXAMPLE

In the sequel we give an example and we examine how the
non-ideal fractional delay may change the frequency
response of the overall system. We try to satisfy the same
requirements used in [3], and [4], using the proposed
decimator structure. The requirements are as follows:
sampling rate change factor R=341/34, desired signal
bandwidth fp=0.001Fin, attenuation in the frequency bands
that cause aliasing at least 80dB, and passband distortion
less than 0.1dB. These requirements are met by the
proposed decimation structure with M=1, N=1, a1=8, K=69,
thus D=2.027658, using the linear interpolation filter. This
has the same complexity as the third order programmable
fractional CIC filter in [4]. The non-integer delay filter has
been designed as an FIR filter of length L=6, using the
Lagrange interpolation method.

The frequency response of the comb stage in the case of
the ideal delay D in feed-forward branch together with the
frequency response in the case of the non-integer delay
filter in the feed-forward branch, are given in Fig. 4. We
see that there is a small degradation for the higher
frequencies as a result of the selected method for the
fractional delay filter realization.
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Fig. 4. The frequency response of the comb stage
with the ideal delay, and non-integer delay filter.

0 0.5 1 1.5 2 2.5 3
−150

−100

−50

0

M
ag

ni
tu

de
 in

 d
B

Frequency relative to  F
in

Fig. 5. Aliasing bands of the overall structure.

The aliasing bands of the overall structure are shown in
Fig. 5. We see that the design requirements are met using
this type of the fractional delay filter. However, there is a
slight degradation of the frequency response at very high
frequencies (2-3 dBs). Possible improvements using some
other fractional delay filter type and design method will be
a topic of our future work.

5. PROGRAMMABILITY

As it was said earlier, the proposed decimator structure with
non-integer delay filter in the comb part is easier to
program than the decimator structure proposed earlier in
[3]. The main reason is that the aliasing band attenuation in
the structure of [3] depends heavily on the fractional part of
the sampling rate conversion factor. The position of zeros
in frequency response of the new structure can be changed
by proper selection of the parameter K. This means
different value of the non-integer delay D, which implies a
different set of coefficients of the non-integer delay filter. A
change of the decimator factor also implies a change of the

coefficients. Therefore, in order to program the proposed
decimator structure, that is to change the CIC filter length
or decimation factor, it is enough to change the coefficients
of the non-integer delay filter at the comb part of the CIC
filter. In our example, there are L+1 coefficients, where L is
order of the non-integer delay FIR filter. The FIR filter can
have relatively low order, thus the number of coefficients is
small. Therefore, the proposed principle can be efficiently
exploited in the multistandard receiver’s decimation chain
as the first stage. For each standard there is a unique
decimation factor, and the corresponding set of coefficients.

6. CONCLUSIONS

In this paper we have presented a novel efficient decimator
structure intended to be the first stage in the decimation
chain of multistandard radio receivers. The proposed
decimator is based on the modified comb filter structure
proposed by Saramäki and Ritoniemi in [6], using the
programmable fractional CIC building blocks. The
proposed structure has good anti-aliasing and anti-imaging
properties, further it is simple and power efficient. A very
important task is the selection of the best non-integer delay
approximation, i.e., selection of the appropriate non-integer
delay filter type and design. The proposed decimator
structure has very high flexibility and programmability. The
filter length and decimation factor can be easily
programmed by changing the coefficients of the non-integer
delay filter in the comb stage.
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